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Networks: Lectures 22-23 Introduction

Outline

Recap on Bayesian social learning

Non-Bayesian (myopic) social learning in networks

Bayesian observational social learning in networks

Bayesian communication social learning in networks

Reading:

Jackson, Chapter 8.

EK, Chapter 16.
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Introduction

How does network structure and “influence” of specific individuals
affect opinion formation and learning?

To answer this question, we need to extend the simple example of
herding from the previous literature to a network setting.

Question: is Bayesian social learning the right benchmark?

Pro: Natural benchmark and often simple heuristics can replicate it
Con: Often complex

Non-Bayesian myopic learning: (rule-of-thumb)

Pro: Simple and often realistic
Con: Arbitrary rules-of-thumb, different performances from different
rules, how to choose the right one?
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What Kind of Learning?

What do agents observe?
Observational learning: observe past actions (as in the example)

Most relevant for markets

Communication learning: communication of beliefs or estimates

Most relevant for friendship networks (such as Facebook)

The model of social learning in the previous lecture was a model of
Bayesian observational learning.
It illustrated the possibility of herding, where everybody copies previous
choices, and thus the possibility that dispersely held information may
fail to aggregate.
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Recap of Herding

Agents arrive in town sequentially and choose to dine in an Indian or
in a Chinese restaurant.
A restaurant is strictly better, underlying state θ ∈ {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.
Agents observe prior decisions, but not the signals of others.
Realization: Assume θ = Indian

Agent 1 arrives. Her signal indicates ‘Chinese’. She chooses Chinese.
Agent 2 arrives. His signal indicates ‘Chinese’. He chooses Chinese.
Agent 3 arrives. Her signal indicates ‘Indian’. She disregards her signal
and copies the decisions of agents 1 and 2, and so on.

1

Decision = ‘Chinese’

2

Decision = ‘Chinese’

3

Decision = ‘Chinese’
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Potential Challenges

Perhaps this is too “sophisticated”.

What about communication? Most agents not only learn from
observations, but also by communicating with friends and coworkers.

Let us turn to a simple model of myopic (rule-of-thumb) learning and
also incorporate network structure.
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Myopic Learning

First introduced by DeGroot (1974) and more recently analyzed by
Golub and Jackson (2007).

Beliefs updated by taking weighted averages of neighbors’ beliefs

A finite set {1, . . . , n} of agents

Interactions captured by an n × n nonnegative interaction matrix T

Tij > 0 indicates the trust or weight that i puts on j
T is a stochastic matrix (row sum=1; see below)

There is an underlying state of the world θ ∈ R
Each agent has initial belief xi (0); we assume θ = 1/n

∑n
i=1 xi (0)

Each agent at time k updates his belief xi (k) according to

xi (k + 1) =
n∑

j=1

Tijxj(k)
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What Does This Mean?

Each agent is updating his or her beliefs as an average of the
neighbors’ beliefs.

Reasonable in the context of one shot interaction.

Is it reasonable when agents do this repeatedly?
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Stochastic Matrices

Definition

T is a stochastic matrix, if the sum of the elements in each row is equal to
1, i.e., ∑

j

Tij = 1 for all i .

Definition

T is a doubly stochastic matrix, if the sum of the elements in each row
and each column is equal to 1, i.e.,∑

j

Tij = 1 for all i and
∑

i

Tij = 1 for all j .

Throughout, assume that T is a stochastic matrix. Why is this
reasonable?
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Example

Consider the following example

T =

 1/3 1/3 1/3
1/2 1/2 0

0 1/4 3/4


Updating as shown in the figure
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Example (continued)

Suppose that initial vector of beliefs is

x (0) =

 1
0
0


Then updating gives

x (1) = Tx (0) =

 1/3 1/3 1/3
1/2 1/2 0

0 1/4 3/4

 1
0
0

 =

 1/3
1/2

0
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Example (continued)

In the next round, we have

x (2) = Tx (1) = T 2x (0) =

 1/3 1/3 1/3
1/2 1/2 0

0 1/4 3/4

 1/3
1/2

0


=

 5/18
5/12
1/8


In the limit, we have

x (n) = T nx (0)→

 3/11 3/11 5/11
3/11 3/11 5/11
3/11 3/11 5/11

 x (0) =

 3/11
3/11
3/11

 .

Note that the limit matrix, T ∗ = limn→∞ T n has identical rows.

Is this kind of convergence general? Yes, but with some caveats.
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Example of Non-convergence

Consider instead

T =

 0 1/2 1/2
1 0 0
1 0 0


Pictorially
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Example of Non-convergence (continued)

In this case, we have

For n even:

T n =

 1 0 0
0 1/2 1/2
0 1/2 1/2

 .

For n odd:

T n =

 1/2 1/2 0
1 0 0
1 0 0

 .

Thus, non-convergence.
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Convergence

Problem in the above example is periodic behavior.
It is sufficient to assume that Tii > 0 for all i to ensure aperiodicity.
Then we have:

Theorem

Suppose that T defines a strongly connected network and Tii > 0 for each
i , then limn T n = T ∗ exists and is unique. Moreover, T ∗ = eπ′, where e is
the unit vector and π is an arbitrary row vector.

In other words, T ∗ will have identical rows.
An immediate corollary of this is:

Proposition

In the myopic learning model above, if the interaction matrix T defines a
strongly connected network and Tii > 0 for each i , then there will be
consensus among the agents, i.e., limn→∞ xi (n) = x∗ for all i .
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Learning

But consensus is not necessarily a good thing.

In the herding example, there is consensus (of sorts), but this could
lead to the wrong outcome.

We would like consensus to be at

x∗ =
1

n

n∑
i=1

xi (0) = θ,

so that individuals learn the underlying state. If this happens, we say
that the society is wise.
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When Will There Be Learning?

Somewhat distressing result:

Proposition

In the myopic learning model, the society is wise if and only if T is doubly
stochastic.

Intuition: otherwise, there is no balance in the network, so some
agents are influential; their opinion is listened to more than they listen
to other people’s opinion.

Is this a reasonable model for understanding the implications of
influence?
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Influential Agents and Learning

A set of agents B is called
an influential family if the
beliefs of all agents outside
B is affected by beliefs of B
(in finitely many steps)

B

The previous proposition shows that the presence of influential agents
implies no asymptotic learning

The presence of influential agents is the same thing as lack of doubly
stochasticity of T
Interpretation: Information of influential agents overrepresented

Distressing result since influential families (e.g., media, local leaders)
common in practice
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Towards a Richer Model

Too myopic and mechanical: If communicating with same people over
and over again (deterministically), some recognition that this
information has already been incorporated.

No notion of misinformation or extreme views that can spread in the
network.

No analysis of what happens in terms of quantification of learning
without doubly stochasticity
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A Model of Misinformation

Misinformation over networks from Acemoglu, Ozdaglar, ParandehGheibi
(2009)

Finite set N = {1, . . . , n} of agents, each with initial belief xi (0).

Time continuous: each agent recognized according to iid Poisson processes.

xi (k): belief of agent i after k th communication.

Conditional on being recognized, agent i meets agent j with probability pij :

With probability βij , the two agents agree and exchange information

xi (k + 1) = xj(k + 1) = (xi (k) + xj(k))/2.

With probability γ ij , disagreement and no exchange of information.
With probability αij , i is influenced by j

xi (k + 1) = εxi (k) + (1− ε)xj(k)

for some ε > 0 small. Agent j ’s belief remains unchanged.

We say that j is a forceful agent if αij > 0 for some i .
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Evolution of Beliefs

Letting x(k) = [x1(k), . . . , xn(k)], evolution of beliefs written as

x(k + 1) = W (k)x(k),

where W (k) is a random matrix given by

W (k) =

 Aij ≡ I − (ei−ej )(ei−ej )
′

2 with probability pijβij/n,
Jij ≡ I − (1− ε) ei (ei − ej)

′ with probability pijαij/n,
I with probability pijγ ij/n,

where ei is the ith unit vector (1 in the ith position and 0s everywhere else).

The matrix W (k) is a (row) stochastic matrix for all k, and is iid over all k,
hence

E [W (k)] = W̃ for all k ≥ 0.

We refer to the matrix W̃ as the mean interaction matrix.
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Social Network and Influence Matrices

Using the belief update model, we can decompose W̃ as:

W̃ =
1

n

∑
i,j

pij

[
βijAij + αijJij + γ ij I

]
=

1

n

∑
i,j

pij

[
(1− γ ij)Aij + γ ij I

]
+

1

n

∑
i,j

pijαij

[
Jij − Aij

]
= T + D.

Matrix T represents the underlying social interactions: social network matrix

Matrix D represents the influence structure in the society: influence matrix

Decomposition of W̃ into a doubly stochastic and a remainder component

Social network graph: the undirected (and weighted) graph (N ,A), where
A = {{i , j} | Tij > 0}, and the edge {i , j} weight given by Tij = Tji
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Assumptions

Suppose, in addition, that the graph (N , E), where
E = {(i , j) | pij > 0}, is strongly connected; otherwise, no consensus
is automatic.

Moreover, suppose that

βij + αij > 0 for all (i , j) ∈ E .

Positive probability that even forceful agents obtain information from
the other agents in the society.
Captures the idea that “no man is an island”
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Convergence to Consensus

Theorem

The beliefs {xi (k)}, i ∈ N converge to a consensus belief, i.e., there exists a
random variable x̄ such that

lim
k→∞

xi (k) = x̄ for all i with probability one.

Moreover, there exists a probability vector π̄ with limk→∞ W̃ k = eπ̄′, such that

E [x̄ ] =
n∑

i=1

π̄ixi (0) = π̄′x(0).

Convergence to consensus guaranteed; consensus belief is a random variable.

We are interested in providing an upper bound on

E
[
x̄ − 1

n

∑
i∈N

xi (0)
]

=
∑
i∈N

(
π̄i −

1

n

)
xi (0).

π̄ : consensus distribution, and π̄i − 1
n : excess influence of agent i
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Global Bounds on Consensus Distribution

Theorem

Let π denote the consensus distribution. Then,∥∥∥π − 1

n
e
∥∥∥

2
≤ 1

1− λ2

∑
i,j pijαij

n
,

where λ2 is the second largest eigenvalue of the social network matrix T .

Proof using perturbation theory of Markov Chains

View W̃ as a perturbation of matrix T by the influence matrix D

λ2 related to mixing time of a Markov Chain

When the spectral gap (1− λ2) is large, we say that the Markov Chain
induced by T is fast-mixing

In fast-mixing graphs, forceful agents will themselves be influenced by others
(since βij + αij > 0 for all i , j)

Beliefs of forceful agents moderated by the society before they spread
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Bayesian Social Learning

Learning over general networks; Acemoglu, Dahleh, Lobel, Ozdaglar (2008).

Two possible states of the world θ ∈ {0, 1}, both equally likely

A sequence of agents (n = 1, 2, ...) making decisions xn ∈ {0, 1}.

Agent n obtains utility 1 if xn = θ, and utility 0 otherwise.

Each agent has an iid private signal sn in S . The signal is generated
according to distribution Fθ (signal structure)

Agent n has a neighborhood B(n) ⊆ {1, 2, ..., n − 1} and observes the
decisions xk for all k ∈ B(n).

The set B(n) is private information.

The neighborhood B(n) is generated according to an arbitrary distribution
Qn (independently for all n) (network topology)

The sequence {Qn}n∈N is common knowledge.

Asymptotic Learning: Under what conditions does limn→∞ P(xn = θ) = 1?
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An Example of a Social Network

7

4

1
3

5

6

2

STATE 
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Perfect Bayesian Equilibria

Agent n’s information set is In = {sn,B(n), xk for all k ∈ B(n)}
A strategy for individual n is σn : In → {0, 1}
A strategy profile is a sequence of strategies σ = {σn}n∈N.

A strategy profile σ induces a probability measure Pσ over {xn}n∈N.
Definition

A strategy profile σ∗ is a pure-strategy Perfect Bayesian Equilibrium if for all n

σ∗n(In) ∈ arg max
y∈{0,1}

P(y ,σ∗−n)
(y = θ | In)

A pure strategy PBE exists. Denote the set of PBEs by Σ∗.

Definition

We say that asymptotic learning occurs in equilibrium σ if xn converges to θ in
probability,

lim
n→∞

Pσ(xn = θ) = 1
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Some Difficulties of Bayesian Learning

No following the crowds
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Some Difficulties of Bayesian Learning

No following the crowds

1

X1 = 0

2

X1 = 1

3

X1 = 1

4

X1 = 1

5

X1 = 1
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Some Difficulties of Bayesian Learning

No following the crowds

1

X1 = 1

2

X1 = 1

3

X1 = 1

4

X1 = 1

5

X1 = 0

X1 = 0 X1 = 1

29



Networks: Lectures 22-23 Bayesian Social Learning over Networks

Some Difficulties of Bayesian Learning

No following the crowds

1

X1 = 1

2

X1 = 1

3

X1 = 1

4

X1 = 1

5

X1 = 0

X1 = 0 X1 = 1

Less can be more

1

2

3

4

5

6
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Some Difficulties of Bayesian Learning

No following the crowds

1

X1 = 1

2

X1 = 1

3

X1 = 1

4

X1 = 1

5

X1 = 0

X1 = 0 X1 = 1

Less can be more.

1

2

3

4

5

6

Pσ(X6 = Ө)
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Equilibrium Decision Rule

Lemma

The decision of agent n, xn = σ(In), satisfies

xn =

{
1, if Pσ(θ = 1 | sn) + Pσ

(
θ = 1 | B(n), xk for all k ∈ B(n)

)
> 1,

0, if Pσ(θ = 1 | sn) + Pσ
(
θ = 1 | B(n), xk for all k ∈ B(n)

)
< 1,

and xn ∈ {0, 1} otherwise.

Implication: The belief about the state decomposes into two parts:

the Private Belief: Pσ(θ = 1 | sn);
the Social Belief: Pσ(θ = 1 | B(n), xk for all k ∈ B(n)).
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Private Beliefs

Assume F0 and F1 are mutually absolutely continuous.

The private belief of agent n is then

pn(sn) = Pσ(θ = 1|sn) =

(
1 +

dF0(sn)

dF1(sn)

)−1

.

Definition

The signal structure has unbounded private beliefs if

inf
s∈S

dF0

dF1
(s) = 0 and sup

s∈S

dF0

dF1
(s) =∞.

If the private beliefs are unbounded, then there exist agents with
beliefs arbitrarily strong in both directions.

Gaussian signals yield unbounded beliefs; discrete signals yield bounded
beliefs.
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Properties of Network Topology

Definition

A network topology {Qn}n∈N has expanding observations if for all K ,

lim
n→∞

Qn

(
max

b∈B(n)
b < K

)
= 0.

Nonexpanding observations equivalent to a group of agents that is
excessively influential. This is stronger than being influential.
More concretely, the first K agents are excessively influential if there
exists ε > 0 and an infinite subset N ∈ N such that

Qn

(
max

b∈B(n)
b < K

)
≥ ε for all n ∈ N .

For example, a group is excessively influential if it is the source of all
information for an infinitely large component of the network.

Expanding observations ⇔ no excessively influential agents.
32



Networks: Lectures 22-23 Bayesian Social Learning over Networks

Learning Theorem – with Unbounded Beliefs

Theorem

Assume that the network topology {Qn}n∈N has nonexpanding
observations. Then, there exists no equilibrium σ ∈ Σ∗ with asymptotic
learning.

Theorem

Assume unbounded private beliefs and expanding observations. Then,
asymptotic learning occurs in every equilibrium σ ∈ Σ∗.

Implication: Influential, but not excessively influential, individuals do
not prevent learning.

This contrasts with results in models of myopic learning.
Intuition: The weight given to the information of influential individuals
is adjusted in Bayesian updating.
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Proof of Theorem – A Roadmap

Characterization of equilibrium strategies when observing a single
agent.

Strong improvement principle when observing one agent.

Generalized strong improvement principle.

Asymptotic learning with unbounded private beliefs and expanding
observations.
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Observing a Single Decision

Proposition

Let B(n) = {b} for some agent n. There exists Lσb and Uσ
b such that agent n’s

decision xn in σ ∈ Σ∗ satisfies

xn =

 0, if pn < Lσb ;
xb, if pn ∈ (Lσb ,U

σ
b );

1, if pn > Uσ
b .

Let Gj(r) = P(p ≤ r | θ = j) be the conditional distribution of the private
belief with β and β denoting the lower and upper support
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Strong Improvement Principle

Agent n has the option of copying the action of his neighbor b:

Pσ(xn = θ | B(n) = {b}) ≥ Pσ(xb = θ).

Using the equilibrium decision rule and the properties of private beliefs, we
establish a strict gain of agent n over agent b.

Proposition (Strong Improvement Principle)

Let B(n) = {b} for some n and σ ∈ Σ∗ be an equilibrium. There exists a
continuous, increasing function Z : [1/2, 1]→ [1/2, 1] with Z(α) ≥ α such that

Pσ(xn = θ | B(n) = {b}) ≥ Z (Pσ(xb = θ)) .

Moreover, if the private beliefs are unbounded, then:

Z(α) > α for all α < 1.

Thus α = 1 is the unique fixed point of Z(α).
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Generalized Strong Improvement Principle

With multiple agents, learning no worse than observing just one of them.

Equilibrium strategy is better than the following heuristic:

Discard all decisions except the one from the most informed neighbor.
Use equilibrium decision rule for this new information set.

Proposition (Generalized Strong Improvement Principle)

For any n ∈ N, any set B ⊆ {1, ..., n − 1} and any σ ∈ Σ∗,

Pσ (xn = θ | B(n) = B) ≥ Z
(

max
b∈B

Pσ(xb = θ)

)
.

Moreover, if the private beliefs are unbounded, then:

Z(α) > α for all α < 1.

Thus α = 1 is the unique fixed point of Z(α).
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Proof of Theorem

Under expanding observations, one can construct a sequence of agents
along which the generalized strong improvement principle applies

Unbounded private beliefs imply that along this sequence Z(α)
strictly increases

Until unique fixed point α = 1, corresponding to asymptotic learning

38



Networks: Lectures 22-23 Bayesian Social Learning over Networks

No Learning with Bounded Beliefs

Theorem

Assume that the signal structure has bounded private beliefs. Assume that the
network topology satisfies one of the following conditions:

(a) B(n) = {1, ..., n − 1} for all n,

(b) |B(n)| ≤ 1 for all n,

(c) there exists some constant M such that |B(n)| ≤ M for all n and

lim
n→∞

max
b∈B(n)

b =∞ with probability 1,

then asymptotic learning does not occur.

Implication: No learning from observing neighbors or sampling the past.

Proof Idea -Part (c): Learning implies social beliefs converge to 0 or 1 a.s.

With bounded beliefs, agents decide on the basis of social belief alone.
Then, positive probability of mistake–contradiction
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Learning with Bounded Beliefs

Theorem

(a) There exist random network topologies for which learning occurs in all
equilibria for any signal structure (bounded or unbounded).

(b) There exist signal structures for which learning occurs for a collection
of network topologies.

Important since it shows the role of stochastic network topologies and
also the possibility of many pieces of very limited information to be
aggregated.
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Learning with Bounded Beliefs (Continued)

Example

Let the network topology be

B(n) =

{
{1, ..., n − 1}, with probability 1− 1

n ,
∅, with probability 1

n .

Asymptotic learning occurs in all equilibria σ ∈ Σ∗ for any signal structure
(F0,F1).

Proof Idea:

The rate of contrary actions in the long run gives away the state.
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Heterogeneity and Learning

So far, all agents have the same preferences.

They all prefer to take action = θ, and with the same intensity.

In realistic situations, not only diversity of opinions, but also diversity
of preferences.

How does diversity of preferences/priors affect social learning?

Naive conjecture: diversity will introduce additional noise and make
learning harder or impossible.

Our Result: in the line topology, diversity always facilitates learning.
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Model with Heterogeneous Preferences

Assume B(n) = {1, ..., n − 1}.

Let agent n have private preference tn independently drawn from some H.

The payoff of agent n given by:

un (xn, tn, θ) =

{
I (θ = 1) + 1− tn if xn = 1

I (θ = 0) + tn if xn = 0

Assumption: H has full support on (γ, γ), G1, G0 have full support in (β, β).

As before, private beliefs are unbounded if β = 0 and β = 1 and bounded if

β > 0 and β < 1.

Heterogeneity is unbounded if γ = 0 and γ = 1 and bounded if γ > 0 and
γ < 1.
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Main Results

Theorem

With unbounded heterogeneity, i.e., [0, 1] ⊆ supp(H), asymptotic learning occurs
in all equilibria σ ∈ Σ∗ for any signal structure (F0,F1).

Greater heterogeneity under H1 than under H2 if γ
1
< γ

2
and γ1 > γ2

Theorem

With bounded heterogeneity (i.e., [0, 1] * supp(H)) and bounded private beliefs,
there is no learning, but greater heterogeneity leads to “greater social learning”.

Heterogeneity pulls learning in opposite directions:

Actions of others are less informative (direct effect)
Each agent uses more of his own signal in making decisions and,
therefore, there is more information in the history of past actions
(indirect effect).

Indirect effect dominates the direct effect!
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Some Observations

Preferences immediately imply that each agent will use a threshold
rule as a function of this type tn.

xn =

{
1, if Pσ(θ = 1|In) > tn;
0, if Pσ(θ = 1|In) < tn.

Similar arguments lead to a characterization in terms of private and
social beliefs.

Private belief: pn = P(θ = 1|sn)

Social belief: qn = P(θ = 1|x1, ..., xn−1).
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Preliminary Lemmas

Lemma

In equilibrium, agent n chooses action xn = 0 if and and if

pn ≤
tn(1− qn)

tn(1− 2qn) + qn
.

This follows by manipulating the threshold decision rule.

Lemma

The social belief qn converges with probability 1.

This follows from a famous result in stochastic processes, Martingale
Convergence Theorem (together with the observation that qn is a
martingale).

Let the limiting belief (random variable) be q̂.
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Key Lemmas

Lemma

The limiting social belief q̂ satisfies

q̂ /∈

([
1 +

(
β

1− β

)(
1− γ
γ

)]−1

,

[
1 +

(
β

1− β

)(
1− γ
γ

)]−1
)

with probability 1.

Lemma

The limiting social belief q̂ satisfies

q̂ /∈

[
0,

[
1 +

1− β
β

β

1− β
1− γ
γ

]−1
)⋃([

1 +
1− β
β

β

1− β
1− γ
γ

]−1

, 1

]

with probability 1.

This characterization is “tight” in the sense that simple examples reach any
of the points not ruled out by these lemmas.
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Sketch of the Proof of the Lemmas

1

1

0
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Sketch of the Proof of the Lemmas (continued)

1

1

0
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Main Results As Corollaries

Setting β = 0 and β = 1, and we conclude that q̂ must converge almost
surely either to 0 or 1.

Since qn/(1− qn) conditional on θ = 0 and (1− qn)/qn conditional on θ = 1
are also martingales and converge to random variables with finite
expectations, when θ = 0, we cannot almost surely converge to 1 and vice
versa.

Therefore, there is asymptotic learning with unbounded private beliefs (as
before).

Similarly, setting γ = 0 and γ = 1, we obtain the first theorem—with
unbounded heterogeneity, there is always asymptotic learning regardless of
whether privates beliefs are unbounded.

In this case, asymptotic learning with unbounded private beliefs and
homogeneous preferences has several “unattractive features”—large jumps
in beliefs.

Learning with unbounded heterogeneous preferences takes a much more
“plausible” form—smooth convergence to the correct opinion.
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Main Results As Corollaries (continued)

Finally, when β > 0, β < 1, γ > 0 and γ < 1, then no social learning.

But in this case, the region of convergence shifts out as heterogeneity
increases: Why does this correspond to more social learning?

Because it can be shown that the ex-ante probability of making the right
choice

1

2
P
[
q|θ = 0

]
+

1

2
P [q|θ = 1] ,

is decreasing in γ and increasing γ—greater social learning.
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A Model of Bayesian Communication Learning

Effect of communication on learning: Acemoglu, Bimpikis, Ozdaglar (2009)

Two possible states of the world, θ ∈ {0, 1}

A set N = {1, . . . , n} of agents and a friendship network given

Stage 1: Network Formation

Additional link formation is costly, cn
ij : cost incurred by i to link with j

Induces the communication network G n = (N , En)

Stage 2: Information Exchange (over the communication network G n)

Each agent receives an iid private signal, si ∼ Fθ
Agents receive all information acquired by their direct neighbors
At each time period t they can choose:
(1) irreversible action 0 (2) irreversible action 1 (3) wait
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Stage 1: Forming the communication network

Friendship network

+ Additional Links=Communication network
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Stage 1: Forming the communication network

Friendship network + Additional Links=Communication network

Agent 1 forms the directed links (2, 1) and (6, 1) incurring the costs c12 and c16.
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Stage 2: Information Exchange
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Stage 2: Information Exchange
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Stage 2: Information Exchange
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Model

In this lecture: Focus on stage 2

Agent i ’s payoff is given by

ui (x
n
i , θ) =

{
δτπ if xn

i,τ = θ and xn
i,t = “wait” for t < τ

0 otherwise
xn
i = [xn

i,t ]t≥0: sequence of agent i ’s decisions, xn
i,t ∈ {0, 1, “wait”}

δ: discount factor (δ < 1)
τ : time when action is taken (agent collects information up to τ)
π: payoff - normalized to 1

Preliminary Assumptions (relax both later):
1 Information continues to be transmitted after exit.
2 Communication between agents is not strategic

Let
Bn

i,t = {j 6= i | ∃ a directed path from j to i with at most t links in G n}
All agents that are at most t links away from i in G n

Agent i ’s information set at time t: I n
i,t = {si , sj for all j ∈ Bn

i,t}.
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Equilibrium and Learning

Given a sequence of communication networks {G n} (society):

Strategy for agent i at time t is σn
i,t : In

i,t → {“wait”, 0, 1}

Definition

A strategy profile σn,∗ is a Perfect-Bayesian Equilibrium if for all i and t,

σn,∗
i,t ∈ arg max

y∈{“wait”,0,1}
E(y ,σn,∗

−i,t)

(
ui (x

n
i , θ)|I n

i,t

)
.

Let

Mn
i,t =

{
1 if xi,τ = θ for some τ ≤ t
0 otherwise

Definition

We say that asymptotic learning occurs in society {G n} if for every ε > 0

limn→∞ limt→∞ Pσn,∗
([

1
n

∑n
i=1

(
1−Mn

i,t

)]
> ε
)

= 0
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Agent Decision Rule

Lemma

Let σn,∗ be an equilibrium and I n
i,t be an information set of agent i at time t.

Then, the decision of agent i , xn
i,t = σn,∗

i,t (I n
i,t) satisfies

xn
i,t =


0, if log L(si ) +

∑
j∈Bn

i,t
log L(sj) ≤ − log An,∗

i,t ,

1, if log L(si ) +
∑

j∈Bn
i,t

log L(sj) ≥ log An,∗
i,t ,

“wait”, otherwise,

where L(si ) =
dPσ(si

∣∣θ=1)

dPσ(si

∣∣θ=0)
is the likelihood ratio of signal si , and An,∗

i,t =
pn,∗

i,t

1−pn,∗
i,t

, is

a time-dependent parameter.

pn,∗
i,t : belief threshold that depends on time and graph structure

For today:

Focus on binary private signals si ∈ {0, 1}
Assume L(1) = β

1−β and L(0) = 1−β
β for some β > 1/2.
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Minimum Observation Radius

Lemma

The decision of agent i , xn
i,t = σn,∗

i,t (I n
i,t) satisfies

xn
i,t(I n

i,t) =


0, if k t

i,0 − k t
i,1 ≥ log An,∗

i,t ·
(

log β
1−β

)−1

,

1, if k t
i,1 − k t

i,0 ≥ log An,∗
i,t ·

(
log β

1−β

)−1

,

“wait”, otherwise,

where k t
i,1 (k t

i,0) denotes the number of 1’s (0’s) agent i observed up to time t.

Definition

We define the minimum observation radius of agent i , denoted by dn
i , as

dn
i = arg min

t

{∣∣Bn
i,t

∣∣ ∣∣ ∣∣Bn
i,t

∣∣ ≥ log An,∗
i,t ·

(
log

β

1− β

)−1
}
.

Agent i receives at least |Bn
i,dn

i
| signals before she takes an irreversible action

Bn
i,dn

i
: Minimum observation neighborhood of agent i
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A Learning Theorem

Definition

For any integer k > 0, we define the k-radius set, denoted by V n
k , as

V n
k = {j ∈ N

∣∣ ∣∣Bn
j,dn

j

∣∣ ≤ k}

Set of agents with “finite minimum observation neighborhood”

Note that any agent i in the k-radius (for k finite) set has positive
probability of taking the wrong action.

Theorem

Asymptotic learning occurs in society {G n} if and only if

lim
k→∞

lim
n→∞

∣∣V n
k

∣∣
n

= 0.

A “large” number of agents with finite obs. neigh. precludes learning.
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Interpreting the Learning Condition

Definition

Agent i is called an (information) maven of society {G n}∞n=1 if i has an infinite
in-degree. Let MAVEN ({G n}∞n=1) denote the set of mavens of society {G n}∞n=1.

For any agent j , let dMAVEN ,nj the shortest distance defined in
communication network G n between j and a maven
k ∈MAVEN ({G n}∞n=1).

Let W n be the set of agents at distance at most equal to their minimum
observation radius from a maven in G n, i.e., W n = {j

∣∣ dMAVEN ,nj ≤ dn
j }.

Corollary

Asymptotic learning occurs in society {G n}∞n=1 if limn→∞
1
n ·
∣∣W n

∣∣ = 1.

“Mavens” as information hubs; most agents must be close to a hub.
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Interpreting the Learning Condition (Continued)

Definition

Agent i is a social connector of society {G n}∞n=1 if i has an infinite out-degree.

Corollary

Consider society {G n}∞n=1 such that the sequence of in- and out-degrees is
non-decreasing for every agent (as n increases), and

lim
n→∞

∣∣MAVEN ({G n}∞n=1)
∣∣

n
= 0.

Then, asymptotic learning occurs if the society contains a social connector within
a short distance to a maven, i.e.,

dMAVEN ,ni ≤ dn
i , for some social connector i .

Unless a non-negligible fraction of the agents belongs to the set of mavens
and the rest can obtain information directly from a maven, information
aggregated at the mavens spreads through the out-links of a connector.
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Relaxing the Information Flow Assumption

Theorem

Asymptotic learning occurs in society {G n} even when information flows are
interrupted after exit if

lim
k→∞

lim
n→∞

∣∣V n
k

∣∣
n

= 0.

Intuition: When there is asymptotic learning, no interruption of information
flow for a non-negligible fraction of agents.

The corollaries apply as above.
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Relaxing the Nonstrategic Communication Assumption

Theorem

Asymptotic learning in society {G n} is an ε-equilibrium if

lim
k→∞

lim
n→∞

∣∣V n
k

∣∣
n

= 0.

Intuition: Misrepresenting information to a hub (maven) not beneficial, and
thus at most a small benefit for most agents from misrepresenting their
information.

Therefore, if there is asymptotic learning without strategic communication,
then there exists an equilibrium with strategic communication in which
agents taking the right action without strategic communication have no
more than ε to gain by misrepresenting, and thus there exists an
ε-equilibrium with asymptotic learning.
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Learning in Random Graph Models

Focus on networks with bidirectional communication (corresponding
to undirected graphs).

Recall that asymptotic learning occurs if and only if for all but a
negligible fraction of agents, the shortest path to a hub/maven is
shorter than minimum observation radius.

Then the following proposition is intuitive:

Proposition

Asymptotic Learning fails for

(a) Bounded Degree Graphs, e.g., expanders.

(b) Preferential Attachment Graphs (with high probability).

Intuition: Edges form with probability proportional to degree, but there
exist many low degree nodes.
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Learning in Random Graph Models

Proposition

Asymptotic Learning occurs for

(a) Complete and Star Graphs.

(b) Power Law Graphs with exponent γ ≤ 2 (with high probability).

Intuition: The average degree is infinite - there exist many hubs.

(c) Hierarchical Graphs.

Figure: Hierarchical Society.
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