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Abstract

This paper proposes a tractable model to study the equilibrium diversity of technological
progress and shows that equilibrium technological progress may exhibit too little diversity (too
much conformity), in particular, foregoing socially bene�cial investments in �alternative�tech-
nologies that will be used at some point in the future. The presence of future innovations that
will replace current innovations imply that social bene�ts from innovation are not fully inter-
nalized. As a consequence, the market favors technologies that generate current gains relative
to those that will bear fruit in the future; current innovations in research lines that will be
pro�table in the future are discouraged because current innovations are typically followed by
further innovations before they can be pro�tably marketed. A social planner would choose a
more diverse research portfolio and would induce a higher growth rate than the equilibrium
allocation. The diversity of researchers is a partial (imperfect) remedy against the misalloca-
tion induced by the market. Researchers with di¤erent interests, competences or ideas may
choose non-pro�t maximizing and thus more diverse research portfolios, indirectly contributing
to economic growth.
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1 Introduction

Until the �rst decade of the 21st century, almost all research and product development e¤orts in

the transport industry were directed towards improving the power, design and fuel e¢ ciency of

vehicles using gasoline, even though it was widely recognized that those using alternative energy

sources would have a large market in the future as oil prices increased and consumers became

more environmentally conscious.1 Investment in a variety of other alternative energy sources

were similarly delayed.2 Although many commentators now decry the delays in the development

of viable alternatives to fossil fuels, it is di¢ cult to know what the marginal rate of private and

social returns to di¤erent types of research were in these sectors, and thus whether the amount

of diversity generated by the market economy was optimal.3

As a �rst step in the investigation of these issues, this paper theoretically investigates whether

the market economy provides adequate incentives for research in alternative technologies� as

opposed to technologies that are currently and extensively used. Put di¤erently, I ask whether

the market economy will achieve the e¢ cient amount of diversity in research or whether it will

tend to encourage research to be excessively concentrated in some research lines and products.

The main contributions of this paper are twofold. The �rst is to develop a dynamic model

of innovation that can be used to analyze the issues of equilibrium and optimal amounts of

diversity of technological progress. The second is to use this model to show that there is a

natural mechanism leading to �too little diversity�. I also suggest that a counteracting force

against the potential lack of diversity in research may be the �diversity of researchers�: because

of di¤erent competences, beliefs or preferences, researchers may choose to direct their research

towards areas that are under-explored by others and this may partially redress the ine¢ ciently

low level of diversity of research in the market economy.

The mechanism at the heart of this paper is as follows: given the patent system we have

in place, an innovation creates positive externalities on future innovations that will build on its

discoveries and advances. The patent system makes sure that no other �rm can copy the current

innovation (and in particular, it requires an innovation to be di¤erent from �prior art�in the area;

see, for example, Scotchmer, 2005). However, provided that a certain �required inventive step�

is exceeded, a new innovation, even if it builds on prior patented knowledge, would not have to

1Crosby (2006) and Roberts (2005) for readable accounts of the history of research on di¤erent of energy
sources.

2For example, as of 2006, more than 80% of all world energy consumption is from fossil fuels and less than 1%
from geothermal, wind and solar combined (International Energy Agency, 2008).

3 In fact, this question must be answered using a theoretical framework that clari�es the margins in which
the social return to diversity may exceed the private return, since even several episodes in which more diverse
investments would have increased productivity (or growth) ex post would not establish that more diversity would
have increased expected productivity ex ante.
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make royalty payments. In fact, an important objective and a great virtue of the patent system

is to make knowledge freely available to future innovators and thus some amount of �building

on the shoulders of past innovations� is clearly both desirable and unavoidable. In addition,

patent life is capped at 20 years, so even externalities created on further innovations that do

not meet the inventive step requirement cannot be fully internalized. The key observation here

is that this positive externality on future innovations will a¤ect di¤erent types of innovations

di¤erentially.

Consider two potential products, a and b, which are competing in the market. Suppose that

product a has higher quality, so that all else equal, consumers will buy product a. However, at

some future date, consumer tastes (or technology) will change so that product b will become more

popular. We can think of product a as vehicles using fossil fuels and product b as �electric cars�

or other �clean technology vehicles�. Consider two types of innovations. The �rst, innovation

A, will lead to a higher-quality version of product a and thus the output of this innovation can

be marketed immediately. Even though it creates positive externalities on future products that

can build on the processes that it embeds, innovation A still generates a pro�t stream and this

will typically encourage some amount of research. Contrast this to innovation B, which leads to

a higher quality of product b and thus can only be marketed after tastes change. Improvements

in product b will be useful for the society in the future (because tastes will indeed change at

some point). But private incentives for innovation B are weak because the innovator is unlikely

to bene�t from the improvements in the quality of product b even in the future because some

other innovation is likely to signi�cantly improve over the current one before tastes change.

The scenario described above highlights a general feature: the recognition that there will be

further innovations will discourage research in areas that will generate new products or tech-

nologies for the future relative to improving currently used products, processes, or technologies.

Consequently, in equilibrium, too much research will be devoted to currently successful product

and technology lines� in the above example, innovation A. I refer to this situation as �lack of

diversity in research�(or alternatively as �too much conformity�).

This paper shows how these ideas can be formalized using a dynamic model of innovation.

Using this model, it formalizes the ideas discussed above and clari�es the conditions under

which there will be too little diversity in research. In particular, it shows that provided that the

probability (�ow rate in continuous time) of changes in tastes is su¢ ciently high, the market

equilibrium involves too little diversity and too little growth. It should be noted that the

theoretical result of �lack of diversity in research�is not a consequence of lack of complementarity

in research e¤ort. In particular, in the baseline model future research builds on the �shoulders�

of past research so that there is a force pushing against too much diversity (both in equilibrium
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and in the socially optimal allocation). Crucially, however, private incentives are more likely to

internalize the bene�ts resulting from this type of building on the shoulders of past giants and

less likely to internalize the bene�ts that they create for future research by increasing diversity,

which is the mechanism leading to ine¢ ciently low diversity in the model�s equilibrium.

As the discussion here illustrates, this pattern is predicated on a speci�c patent system.

Naturally, an alternative patent system that internalizes all positive externalities created on

future innovations would solve this problem. However, such a patent system is di¤erent from

what we observe in practice and also di¢ cult to implement. For example, such a patent system

would require all innovations in laser technology or solid-state physics to make royalty payments

to Heisenberg, Einstein and Bohr or all steam engine innovations to make payments to Newcomen

and Watts (or to their o¤spring).

While the baseline model here suggests that in an idealized economy there will be too little�

in fact no� diversity in research even though innovations being directed at a wider set of research

lines is socially optimal, in practice a society may generate a more diverse set of research output

because of �diversity of researchers�. In particular, if the society has or generates a set of re-

searchers with di¤erent competencies, preferences and beliefs, then part of its research e¤ort will

be directed at alternative products and technologies rather than all e¤ort being concentrated

on current technology leaders. For instance, in the context of the above example, even though

incentives to improve product a may be greater than those for product b, some researchers may

have a comparative advantage in the type of research that product b requires or may have het-

erogeneous beliefs, making them more optimistic about the prospect of a change in tastes, thus

strengthening their desire to undertake research for product b. Although this kind of researcher

diversity will not restore the Pareto optimal amount of diversity in research, it will act as a

countervailing force against the market incentives that imply too much homogenization. Thus

the analysis here also suggests why having a more diverse set of researchers and scientists might

be useful for a society�s long-run technological progress and growth potential. This intuition

is formalized by showing that a greater diversity in the competences of researchers increases

research directed at substitute varieties and the equilibrium rate of economic growth.

Popular discussions often emphasize the importance of diversity in various settings, including

in research, and also stress that non-pro�t motives are important in research. The framework

here o¤ers a simple formalization of both ideas: diversity in research is important for economic

growth but the market economy may not provide su¢ cient incentives for such diversity; diversity

of researchers, in fact their non-pro�t-seeking or �nerdy�behavior and responsiveness to non-

monetary riwards, may be socially bene�cial as a remedy for the lack of diversity (too much

conformity) in research.
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The model used here is related to the endogenous technological change literature, for ex-

ample, Romer (1990), Grossman and Helpman (1991), and Aghion and Howitt (1992). This

literature typically does not investigate the diversity of research. In addition, the �lock-in�

e¤ects in technology choices emphasized by Nelson and Winter (1982) and Arthur (1989) and

the subsequent literature building on these works are closely related to the main mechanism

leading to too little equilibrium diversity in the current model, though the modeling approaches

are very di¤erent (the approach here builds on endogenous technological change models with

forward-looking innovation decisions, while these alternative approaches rely on learning by do-

ing externalities and organizational constraints on the type of research). In this respect, our

approach is also close related to and builds on Katz and Shapiro�s (1986) model of network

externalities.

A smaller literature investigates the determinants of microeconomic incentives towards the

direction of research. Aghion and Tirole (1994) is an early contribution, focusing on incentive

problems that arise in the management of innovation. More recently, Brock and Durlauf (1999)

investigate equilibrium choice of research topic in scienti�c communities. Aghion, Dewatripont

and Stein (2007) analyze the implications of academic freedom, while Murray, Aghion, Dewa-

tripont, Kolev and Scott (2008) empirically investigate the e¤ect of scienti�c openness on further

research. Jones (2009) argues that scienti�c research is becoming more di¢ cult because there is

now larger body of existing knowledge that needs to be absorbed and shows how this can explain

why major breakthroughs happen later in the lives of scientists and why scienti�c collaborations

have become more common. Bramoullé and Saint-Paul (2008) construct a model of research

cycles, where equilibrium research �uctuates between invention of new lines of research and

development of existing lines. Acemoglu, Bimpikis and Ozdaglar (2008) propose a model where

�rms might have incentives to delay research and copy previous successful projects rather than

engage in simultaneous search. None of these papers highlight or analyze the issues related to di-

versity in research emphasized in this paper. To the best of my knowledge, the only other works

that discuss issues of diversity in research are Bronfenbrenner (1966), Stephan and Levin (1992),

and Sunstein (2001), who emphasize the possibility of fads in academic research, and Dosi and

Malerba (1993), Shy (1996), Christensen (1997), Dalle (1997), Adner and Levinthal (2001), and

Malerba, Nelson, Orsenigo and Winter (2007), who discuss the role of diverse preferences of

users on market structure and patterns of adoption of new technology.

The rest of this paper is organized as follows. Section 2 provides a simple example illustrating

the basic idea. Section 3 presents the baseline environment and characterizes the equilibrium.

Section 4 characterizes the conditions under which the equilibrium will be ine¢ cient and tech-

nological progress will be too slow because of ine¢ ciently low levels of diversity in research.
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Section 5 characterizes the equilibrium when there is diversity in research tastes and shows how

greater diversity increases economic growth. Section 6 concludes, while the Appendix provides

an extended environment that motivates some of the simplifying assumptions in the main text.

It also contains some additional derivations.

2 A Simple Example

In this section, I provide a simple example illustrating the main mechanism leading to ine¢ ciently

low diversity in research. Consider a two-period economy, with periods t = 1 and t = 2 and

no discounting. There are two technologies j and j0, both starting t = 1 with qualities qj (0) =

qj0 (0) = 1. A scientist can work to improve both technologies. Suppose that the scientist

has a total of one unit of time. The probability of improving either of the two technologies

when he devotes x units of his time to the technology is h (x). Suppose that h is strictly

increasing, di¤erentiable, and concave, and satis�es the Inada condition that limx!0 h0 (x) =1.
An improvement increases the quality of the technology (j or j0) to 1+� (with � > 0). At t = 1,

j is the �active�technology, so if the scientist improves technology j, he will be able to market

it and receive return equal to 1+�. Technology j0 is not active, so even if the scientist improves

this technology, he will not be able to market it at t = 1. At time t = 2, technology j0 becomes

active with probability p > 0, replacing technology j (and if so, technology j can no longer

be marketed). Before either of the two technologies is marketed at t = 2, other scientists can

further improve over these technologies. Suppose that this happens with (exogenous) probability

v 2 (0; 1] (and assume, for simplicity, that no such further improvements are possible if there is
no innovation by the scientist at t = 1). In this event, the quality of the product increases by

another factor 1 + �, but the original scientist receives no returns.4

Let us consider the problem of the scientist in choosing the optimal allocation of his time

between the two research projects. When he chooses to devote xj 2 [0; 1] units of his time to
technology j, his return can be written as

� (xj) = h (xj) [1 + (1� p) (1� v)] (1 + �) (1)

+h (1� xj) p (1� v) (1 + �) :

The �rst line is the scientist�s expected return from innovation in technology j. He is successful

with probability h (xj) and receives immediate returns 1 + �. In the next period, technology j

remains active with probability 1� p and his innovation is not improved upon with probability
1 � v, and in this event, he receives 1 + � again. With probability h (1� xj), he successfully

4Thus there are no patents that make further innovations pay royalties to the original inventor. Patent systems
and how they a¤ect the results are discussed in the next section.
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undertakes an innovation for technology j0. Since this technology is not yet active, he receives

no returns at t = 1, but if it becomes active at t = 2 (probability p) and is not improved upon

(probability 1� v), he will receive 1 + � at t = 2.
Maximizing � (xj) with respect to xj gives the following simple �rst-order condition:

h0
�
x�j
�
[1 + (1� p) (1� v)] = h0

�
1� x�j

�
p (1� v) : (2)

Clearly, x�j is uniquely de�ned. It can also be veri�ed that it is increasing in v; as the probability

of further innovations increases, more of the scientist�s time will be devoted to technology j. Also

notably as v ! 1, x�j ! 1 and all research is directed to the currently active technology, j. The

intuition for this result is simple. Because of future improvements, as v ! 1, the scientist

will receive no returns from innovation in technology j0� somebody else will have invented even

a better version of this technology by the time it can be marketed. There will be a similar

improvement over technology j if it remains active until t = 2, but the scientist will in the

meantime receive returns from being able to market it immediately (during t = 1). Thus

the prospect of future improvements over the current innovation disproportionately favors the

currently-active technology. This intuition also explains why x�j is increasing in v.

For comparison, let us consider the research allocation choice of a planner wishing to maxi-

mize total value of output. This can be written as

�(xj) = h (xj)
h
(1 + (1� p) (1� v) (1 + �)) + (1� p) v (1 + �)2

i
+h (1� xj)

h
p (1� v) (1 + �) + pv (1 + �)2

i
:

This di¤ers from (1) because the planner also bene�ts when there is another innovation building

on the shoulders of the innovation of the scientist at t = 1. The allocation of time between the

two technologies that would maximize �(xj) is given by the following �rst-order condition:

h0
�
xSj
�
[(1 + (1� p) (1� v)) + (1� p) v (1 + �)] = h0

�
1� xSj

�
[p (1� v) + pv (1 + �)] :

It can be veri�ed that xSj < x�j , so that the social planner would always prefer to allocate more

of the scientist�s time to technology j0 (and thus less of his time to the active technology).

Interestingly, xSj is decreasing in v. In particular, even as v ! 1, xSj > 0. Intuitively, the social

planner values the improvements in technology j0 more than the scientist because the society

will bene�t from further improvements over those undertaken by the scientist at time t = 1. In

fact, as v increases, future improvements become more important to the social planner relative

to current gains, favoring research directed at technology j0. The scientist does not value such

improvements because they deprive him of the returns from his innovation. Consequently, the

choice by the scientist� relative to the allocation desired by the social planner� leads to too
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little �diversity� in the sense that the majority (or when v ! 1, all) of his research e¤ort is

devoted to the active technology.

Finally, it is straightforward to extend this environment by including several scientists. When

all scientists have the same preferences and maximize their returns, the results are similar to

those discussed here. However, when some scientists have di¤erent preferences and prefer to

work on technology j0, or have di¤erent beliefs and are more optimistic about a switch from

technology j to technology j0, then this type of �diversity of researchers�� and the associated

�non-pro�t maximizing�behavior� will redress some of the ine¢ ciency due to too little �diver-

sity in research�.

The next section provides a more detailed model that develops these intuitions.

3 Model

In this section, I introduce the baseline environment and characterize the equilibrium. The

baseline environment is chosen to highlight the main economic mechanism in the most trans-

parent manner. Subsection 3.4 discusses why the speci�c modeling assumptions were chosen.

The Appendix shows how similar results can be derived in a richer environment building on

endogenous technological change models.

3.1 Description of Environment

Time is continuous and indexed by t 2 [0;1). Output is produced as an aggregate of a con-
tinuum of intermediate goods (products), with measure normalized to 1. Each intermediate

� 2 [0; 1] comes in several (countably in�nite number of) varieties, denoted by j1 (�), j2 (�),....
Variety ji (�) of intermediate � has an endogenous quality qji (�; t) > 0 (at time t). The quality

of each variety is determined by the position of this product in a quality ladder, which has rungs

equi-proportionately apart by an amount 1 + � (where � > 0). Thus for each ji (�), we have

qji (�; t) = (1 + �)
nji (�;t) qji (�; 0) ;

with nji (�; t) 2 Z+ corresponding to the rung of this product on the quality ladder. Throughout,
let us normalize qji (�; 0) = 1 for all � 2 [0; 1] and i = 1; 2; :::. Product qualities increase due

to technological progress driven by research, which raises the rung of the product in the quality

ladder. I describe the process of technological progress below.

At any point in time, only one of the varieties of any intermediate � 2 [0; 1] can be used in
production. I use the notation j (or j (�)) to denote this �active�variety. Aggregate output is

therefore given by

Y (t) = Q (t) �
Z 1

0
qj (�; t) d�; (3)
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where Q (t) is the average quality of active intermediates at time t. The production function (3)

is a reduced-form representation of several richer endogenous growth models.5

Because of switches in tastes or other technological changes, the active variety of each in-

termediate becomes obsolete (�disappears�) at the �ow rate � � 0 at any point. These obso-

lescence events are independent across intermediates and over time. The motivation for this

type of obsolescence is the switch in technology induced by environmental concerns from the

�active� technologies based on fossil fuels to �substitute� alternative energy sources discussed

in the Introduction. In particular, let us order varieties such that if ji (�) is the active variety of

intermediate � at t, then when it disappears the active variety becomes ji+1 (�). With a slight

abuse of notation, at any point in time I use j to denote the currently active variety and j0 to

denote the next variety.

There is a continuum of �scientists,�with measure normalized to 1. A scientist can work

either on active varieties or on substitute varieties.6 A scientist working on active varieties

discovers a higher quality version of one of the intermediates at the �ow rate � > 0. Which

intermediate the innovation will be for is determined randomly with uniform probability. The

quality ladder structure introduced above implies that an innovation starting from an interme-

diate of quality q leads to a new quality equal to (1 + �) q.

A scientist working on substitute varieties discovers a higher quality version of the next-

in-line substitute for one of the intermediates at the �ow rate ��, where � � 1 (again chosen

with uniform probability). This assumption implies that if the current active variety is ji (�) for

intermediate �, then substitute research could lead to the invention of a higher quality version

of ji+1 (�). Following such a discovery, the quality of the substitute variety increases from q0 to

(1 + �) q0. The presence of the term � allows innovation for substitute varieties to be easier than

innovation for active varieties, for example, because the availability of a more advanced active

variety makes some of these improvements for the related substitute variety more straightforward

to discover or implement. Since improvements in the quality of substitute varieties also take the

form of moving up in the rungs of the quality ladder, we can summarize the quality di¤erences

between active and substitute varieties by the di¤erence in the number of steps (�quality gap�)

in the ladder between the two, which I will denote by n (�; t) or simply by n (�) or n. Formally,

n (�; t) � nji (�; t)� nji+1 (�; t) :

In addition to endogenous quality improvements, there are �exogenous� quality improve-

ments for all substitute varieties. In particular, if variety ji (�) is the active one for intermediate

5The Appendix sketches one such model, which leads to a structure identical to the reduced-form model used
here.

6See the Appendix for a model in which research is also directed to speci�c intermediates.
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�, then I assume that any i + 1 > i cannot be more than N steps behind the currently active

variety ji (�). In other words, qji+1 (�; t) cannot be less than qji (�; t) when the quality of the

active variety is qji (�; t), where

 � (1 + �)�N

for some N 2 N (and thus  < 1). The speci�cation in particular implies that if the

quality of the active variety increases from qji (�; t) to qji (�; t+) = (1 + �) qji (�; t) and we

have qji+1 (�; t) = qji (�; t), then the quality of the substitute variety i + 1 also increases to

qji+1 (�; t+) =  (1 + �) qji (�; t).
7 As a consequence, when a switch (from j to j0) happens we

always have qj0 (�; t) � qj (�; t). Furthermore, suppose throughout that qj0 (�; t) � qj (�; t) for

all � 2 [0; 1]� substitute varieties cannot be more advanced than active varieties.
What about the gap between the substitute variety ji+1 (�) and its substitute ji+2 (�)? I

assume that research on substitute varieties creates a positive spillover on the quality of varieties

beyond the immediate substitute (in particular, on i+2), so that when be the gap between i+1

and i is n so will the gap between i + 2 and i + 1, i.e., nji+1 (�; t) � nji+2 (�; t) = nji (�; t) �
nji+1 (�; t). This assumption simpli�es the analysis by allowing for an explicit characterization

of the stationary distribution of quality gaps.8

I also assume that

� � �1; (4)

so that the relative ease of innovation in substitute varieties does not exceed the productivity

advantage of the active varieties.

The patent system functions as follows. A scientist who has invented a higher quality (of

the active variety) of some intermediate has a perfectly enforced patent and receives a revenue

equal to the contribution of its intermediate to total output. That is, a scientist with a patent

on the active variety of an intermediate with quality (1 + �) q receives a �ow revenue of �q,

since the contribution of this intermediate to total output over the next highest quality, q,

is (1 + �) q � q = �q.9 Importantly, an improvement over this variety (for example, leading to

quality (1 + �) q) does not constitute a patent infringement and thus the scientist in question does

not receive any revenues after another scientist improves the quality of this variety. Similarly,

7The notation qji (�; t+) stands for qji (�; t) just after time t.
8 In fact, all that is necessary is the weaker assumption that nji+1 (�; t) � nji+2 (�; t) has the same stochastic

distribution as nji (�; t)� nji+1 (�; t). This will be the case, for example, under the following scenario: using the
same notation as below, let pu denote the �ow rate of innovation in the active variety and pd denote the �ow
rate of innovation in the next in line substitute variety; then the �ow rate of innovation in the substitute of the
substitute needs to be approximately p2d=pu (see equation (17)).

9This expression assumes that the current scientist is not the holder of the next highest quality. As shown
below, this is without loss of any generality.
More generally, we could assume that the scientist receives a �ow revenue of ��q for some � 2 (0; 1], with

identical results. The model presented in the Appendix corresponds to the case in which � 2 (0; 1).
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scientists that undertake inventions improving the quality of the substitute variety are also

awarded a perfectly enforced patent and can receive a �ow revenue of q for their product of quality

q if (and after) the active variety of this intermediate disappears. Also, suppose that if there

is a further innovation for the active variety, from qj (�; t) to qj (�; t+) = (1 + �) qj (�; t), then

the next-in-line substitute variety of intermediate � of quality qj0 (�; t+) = (1 + �) qj (�; t+)

becomes freely available. Consequently, subsequent to such an innovation in the active variety,

all substitute varieties with quality q � qj0 (�; t+) would receive no revenues even if the active

variety were to disappear. Therefore, only holders of a patent for substitute varieties of quality

qj0 (�; t) > qj (�; t) will receive revenues when the active variety disappears.10

Finally, let us assume that scientists maximize the (expected) net present discounted value

of their revenues with discount rate r > 0.

Given the above description, an equilibrium in this economy is given by a time path of

research decisions by scientists that maximize their net present discounted values (in particular,

they choose whether to undertake research directed at active or substitute varieties) and the

distribution of technology gaps between sectors. More formally, let ! (t) 2 [0; 1] be the fraction
of researchers at time t undertaking research in substitute varieties and �n (t) 2 [0; 1] be the
fraction of intermediates where the gap between the active variety ji (�) and the next substitute

variety ji+1 (�) is n = 0; 1; :::; N steps. An equilibrium can then be represented by time paths of

! (t) and �n (t) (for n = 0; 1; :::; N). A stationary equilibrium is an allocation in which ! (t) = !�

and �n (t) = ��n (for n = 0; 1; :::; N) for all t. I focus on stationary equilibria.

3.2 Equilibrium with No Diversity

In this subsection, I show that all scientists undertaking research on active varieties, that is,

! (t) = 0 for all t, is a stationary equilibrium. I provide additional details on this equilibrium

and conditions for this to be the unique equilibrium in the next subsection.

Consider such a candidate (stationary) equilibrium. Then the value of holding the patent to

the active intermediate of quality (1 + �) q is

rV (q) = �q � (�+ �)V (q) : (5)

This is intuitive. The scientist receives a revenue of �q (= (1 + �) q � q) until the �rst of two

events: (i) there is a switch to the substitute technology, which takes place at the �ow rate �,

or (ii) there is a new innovation, which happens at the �ow rate � (since all scientists work to

10Here I am using the fact that  � (1 + �)�N . Without this feature, improvements in the quality of the
active variety of some intermediate may reduce the potential contribution of the substitute varieties that have
quality qj0 (�; t) 2 (qj (�; t) ; (1 + �) qj (�; t)). When  � (1 + �)�N , qj0 (�; t) > qj (�; t) we automatically have
qj0 (�; t) �  (1 + �) qj (�; t).
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improve active varieties, the total measure of scientists is 1, and the measure of intermediates

is normalized to 1).11 Following both events, the scientist loses his patent on this product.

Therefore, the right-hand side of (5) must be equal to the discount rate, r, times the value

of the patent.12 Note also that given the large number (�continuum�) of other scientists, the

likelihood that he will be the one inventing the next highest quality is zero. This also explains

why assuming that patents on the highest and the next highest qualities are never held by the

same scientist is without loss of any generality.13 Equation (5) gives the value of holding the

patent for active intermediate of quality q as:

V (q) =
�q

r + �+ �
: (6)

Therefore, the value of directing research to active varieties can be written as

RA (Q) = �

Z 1

0
V (q (�; t)) d� =

��Q

r + �+ �
; (7)

where recall that Q �
R 1
0 qj (�) d�. In particular, such research will lead to a successful innova-

tion at the �ow rate � for one of the intermediates (chosen uniformly). When previously this

intermediate had quality q, the innovation will produce a version of the same intermediate with

quality (1 + �) q and will yield value V (q), as given by (6), to scientists.

Under the candidate equilibrium studied here, there is no research directed to substitute

varieties and thus ! = 0. Then it is intuitively clear that the equilibrium will involve the same

quality gap between active and substitute varieties of N steps across all intermediates, i.e.,

��N = 1 and �
�
n = 0 for n = 0; 1; :::; N � 1: (8)

Though intuitive, a formal derivation of (8) will be provided in the next subsection. For now,

given (8), we can straightforwardly characterize the return to undertaking research directed at

substitute varieties and obtain our main result. Suppose, in particular, that a scientist directs

his research to substitute varieties. Under the candidate equilibrium (with ! = 0 and thus with

(8)), the quality of the substitute variety for intermediate � is

q0 (�; t) = q (�; t) ;

11Note that V (q) refers to the value of the patent, not to the continuation value of the scientist in question;
a scientist is undertaking parallel research regardless of whether this product is replaced or not. Following the
disappearance of the active variety or another innovation, the value of the patent disappears, explaining the last
term in (5).
12More generally, _V (q) should be subtracted from the left-hand side, but under this candidate stationary

equilibrium, we have _V (q) = 0.
13 If, as in the model in the Appendix, we were to allow research to be directed to speci�c intermediates, then

a standard argument based on Arrow�s replacement e¤ect (Arrow, 1962) would immediately imply that scientists
never wish to undertake research on the intermediate line in which they have the best product. See Acemoglu
(2009) for a textbook treatment of Arrow�s replacement e¤ect.
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when the quality of the active product is q (�; t). A successful innovation on a substitute variety

of quality q0 leads to a product of quality (1 + �) q0 (�; t) = (1 + �) q (�; t), but this is still

a substitute variety and will remain so until the active variety disappears. A patent on this

product therefore has value ~V (q0) such that

r ~V
�
q0
�
= �

�
V
�
q0
�
� ~V

�
q0
��
� � ~V

�
q0
�
: (9)

Intuitively, this patent does not provide any revenues until the active variety disappears, which

takes place at the �ow rate �. However, if there is an additional innovation on the active variety

of this intermediate before this event, the active variety increases its quality to (1 + �) q and

the substitute variety of quality (1 + �) q = (1 + �) q0 becomes freely available and thus the

patent on this variety is no longer valuable (see also the explanation for equation (18) in the

next subsection). Therefore, we have

~V
�
q0
�
=

�V (q0)

r + �+ �
(10)

and the return to undertaking research on the substitute varieties when the average quality of

active varieties is Q �
R 1
0 qj (�) d� can be written as

RS (Q) =
���

r + �+ �

Z 1

0
V (q (�; t)) d�

=
���

r + �+ �
� �Q

r + �+ �

=
��

r + �+ �
RA (Q) : (11)

Since � � �1 (from (4)), r > 0, � > 0, and � > 0, comparison of (7) and (11) immediately

establishes that RA (Q) > RS (Q), so that the candidate equilibrium is indeed an equilibrium

and no scientist undertakes research on substitute varieties. Intuitively, the fact that substitute

varieties only become marketable at some future date (stochastically arriving at the �ow rate �)

makes research directed at them relatively unattractive compared to research on active varieties,

which, when successful, will have immediate returns.14

Let us next compute the equilibrium growth rate. First note that for any � 2 [0; 1] and
for �t su¢ ciently small, quality q (�; t+�t) will increase to (1 + �) q (�; t) with probability

��t+ o (�t), it will fall to q (�; t) with probability ��t+ o (�t), and will remain constant at

q (�; t) with probability 1� ��t���t+ o (�t), where o (�t) denotes second-order terms in �t
14 It is also straightforward to see that this conclusion continues to be valid even if a scientist who has invented

a higher-quality substitute variety maintains his patent following an exogenous improvement in quality because of
an innovation for the active product (in this case, the denominator of (10) would be r+�). See also the discussion
of uniqueness in the next subsection.
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(i.e., lim�t!0 o (�t) =�t = 0). Therefore, aggregating across all intermediates, we have

Q (t+�t) = (1 + �)Q (t) ��t+ Q (t)��t+Q (t) (1� ��t� ��t) + o (�t) :

Subtracting Q (t), dividing by �t and taking the limit as �t! 0, we obtain

g (t) =
_Q (t)

Q (t)
= g� � �� � � (1� ) : (12)

Therefore, this analysis establishes the following proposition (proof in the text).

Proposition 1 In the above-described environment, the allocation where all research is directed

at the active varieties (!� = 0) and all industries have a gap of N steps between active and

substitute varieties (��N = 1) is a stationary equilibrium. In this equilibrium, the economy grows

at the rate g� given by (12).

Clearly, the growth rate of the economy is decreasing in �. A switch from the active to the

substitute variety of an intermediate causes a large drop in the contribution of this intermediate

to output. Aggregate output in this economy is not stochastic because there is a large number

of intermediates. Instead, intermediates where the active varieties disappear (at the �ow rate

�) lose a fraction 1 �  of their contribution to output. Equation (12) also shows that the

equilibrium growth rate is increasing in : the lower is , the more steep is the output drop of

an intermediate experiencing a switch from the active to the substitute variety.

I next provide su¢ cient conditions that guarantee uniqueness of this stationary equilibrium.

I then discuss the reasoning for the modeling assumptions used so far and then turn to an

analysis of the optimality of this equilibrium.

3.3 Uniqueness

Can there be stationary equilibria other the one with !� = 0 characterized in Proposition 1? The

answer is yes because of the following mechanism: further research directed at substitute varieties

increases the average quality of these varieties and makes such research more pro�table. However,

this mechanism is typically not strong enough to generate multiple equilibria. Moreover, there

is a countervailing force pushing towards uniqueness, which is that more research directed at

substitute varieties reduces the lifespan of each variety, thus making patents on such varieties

less pro�table. In this subsection, I provide su¢ cient conditions for uniqueness.

To investigate this issue, we need to determine the distribution of intermediates by technol-

ogy gap between active and next-in-line substitute varieties (the �n�s), which will also enable us

to give a formal derivation of the intuitive result in (8), which we used in the previous subsection.

13



Since we are focusing on stationary equilibria, the fraction of researchers working towards inno-

vations in the substitute varieties is again constant at some ! (which no longer needs to be equal

to zero). Given !, I now characterize the stationary distribution of �n�s.
15 De�ne pu � � (1� !)

and pd � ��! as the �ow rates of innovation of the active and substitute varieties, respectively.

Then

(pu + pd)�n = pu�n�1 + pd�n+1 for n = 1; :::; N � 1: (13)

Intuitively, total exits from state n (for n = 1; 2; :::; N � 1) have three sources. First, there may
be an innovation among the active varieties of the intermediates with gaps of n steps, which

takes place at the �ow rate pu. Secondly, there may be an innovation among the substitute

varieties of intermediates with gaps of n steps, which takes place at the �ow rate pn. Thirdly,

one of the active varieties with gaps of n steps may disappear, which takes place at the �ow rate

�. This makes total exits from state n equal to

(pu + pd + �)�n:

With a similar reasoning, entry into this state comes from three sources. Either there has been

an innovation in the active variety in intermediates with gaps of n�1 (�ow rate pu times �n�1);
or there has been an innovation in the substitute varieties of intermediates with gaps of n + 1

(�ow rate pd times �n+1); or an active variety (of any gap) has disappeared. In this last case, if

the active variety ji (�) of intermediate � has disappeared and been replaced by ji+1 (�), then

the relevant gap becomes the same as that between ji+1 (�) and ji+2 (�), but by assumption,

this is the same as the gap between ji (�) and ji+1 (�), so this last source of entry contributes

��2, to give us total entry into state n as

pu�n�1 + pd�n+1 + ��n:

Combining this with the previous expression gives (13).

Equation (13) does not apply at the boundaries, since the gap cannot fall below 0 and cannot

increase above N . In these cases, with a similar reasoning, we have

pu�0 = pd�1; (14)

and

pu�N�1 = pd�N : (15)

In addition, by de�nition
NX
n=0

�n = 1: (16)

15The Appendix characterizes the evolution of the distribution of quality gaps when ! (t) is time varying.
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Equations (13)-(16) de�ne the stationary distribution of a continuous-time Markov chain.

Since this Markov chain is aperiodic and irreducible, it has a unique stationary distribution (e.g.,

Norris, 1998), which can be directly computed as

��n =

�
pd
pu

�N�n0@ NX
j=0

�
pd
pu

�N�j1A�1 for n = 0; :::; N;

or written as a function of !, as

��n (!) =

�
�!

1� !

�N�n0@ NX
j=0

�
�!

1� !

�N�j1A�1 for n = 0; :::; N: (17)

Now consider the case we study in the previous subsection, where ! = 0. Then (17) immedi-

ately gives (8) as claimed there. Next let us focus the case of interest for this subsection, where

there is research directed at substitute varieties, i.e., ! > 0. In this case, it should be noted that

we cannot simply use equation (9) to determine the value of a patent on a substitute product

of quality q0 because there may now be substitute varieties that are n = 0; 1; :::; N steps behind

the corresponding active variety (not just N steps behind as in the previous subsection). In

that case, the exact value of n will determine the rate at which this patent may become redun-

dant because of advances in the quality of the active variety (because qj reaches (1 + �) �1qj0).

Therefore, we need to explicitly compute the value of a substitute variety of quality q0 when it

is n steps behind the active variety. This is given as

r ~Vn
�
q0
�
= �

�
V
�
q0
�
� ~Vn

�
q0
��
+ pu

�
~Vn+1

�
q0
�
� ~Vn

�
q0
��
� pd ~Vn

�
q0
�
; (18)

where pu � � (1� !) and pd � ��! as before and ~VN+1 (q0) � 0. It can be veri�ed that when
! = 0, this equation gives (9) and (10) for n = N ; recall that (10) applies when ! = 0 and

when all substitute varieties are N steps behind. More generally, equation (18) highlights that

there are three sources of changes in value: (i) a switch to the active variety status (at the �ow

rate � giving new value V (q0) instead of ~Vn (q0)); (ii) a further improvement in the quality of

the active variety, so that the gap increases to n+ 1 steps (at the �ow rate pu giving new value

~Vn+1 (q
0) instead of ~Vn (q0)); and (iii) an innovation directed at the substitute varieties replacing

this product (at the �ow rate pd giving value zero).

Using the fact that ~VN+1 (q0) � 0 and substituting for pu � � (1� !) and pd � ��!, we can

recursively solve (18) to obtain

~Vn
�
q0
�
=

�

r + �+ ��!
V
�
q0
� "
1�

�
� (1� !)

r + �+ � (1� !) + ��!

�N+1�n#
(19)
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for n = 1; :::; N . Note that this is equivalent to

~VN
�
q0
�
=

�

r + �+ � (1� !) + ��!V
�
q0
�
:

For n = 0, the only di¤erence is that there cannot be any further innovations in the substitute

variety, thus

~V0
�
q0
�
=

�

r + �+ ��!
V
�
q0
� " r + �+ ��!

r + �+ � (1� !) + � (1� !)
 
1�

�
� (1� !)

r + �+ � (1� !) + ��!

�N!#
:

In a stationary allocation where a fraction ! of scientists are directing their research towards

substitute varieties, the rate of replacement of active varieties will be � (1� !), and thus (6)
and (7) also need to be modi�ed. In particular, with a similar reasoning to that in the previous

subsection, these take the form

V (q) =
�q

r + �+ � (1� !) ; (20)

and

RA (Q) = �

Z 1

0
V (q (�; t)) d� =

��Q

r + �+ � (1� !) : (21)

Next, turning to the expected return to a scientist directing his research to substitute vari-

eties, we have

RS = ��

NX
n=1

��n ~Vn
�
q0
�

= ��

NX
n=1

��n ~Vn
�
(1 + �)�n q

�
;

where in the �rst line the summation starts from n = 1, since there is no possibility of successful

innovation for the fraction ��0 of intermediates where the gap is n = 0. The second line expresses

the values as a function of the quality of the active variety, using the identity that if there is n

step gap between active and substitute varieties, then q0 = (1 + �)�n q. Now using (17), (19)

and (20), we can write

RS (Q) = ��
�Q

r + �+ � (1� !)
�

r + �+ ��!
� (!)

= �
�

r + �+ ��!
� (!)RA (Q) ;

where again Q �
R 1
0 qj (�) d� and the second line uses (21). In this expression,

� (!) �
NX
n=1

�
�!

1� !

�N�n0@ NX
j=0

�
�!

1� !

�N�j1A�1 (1 + �)�n "1� � � (1� !)
r + �+ � (1� !) + ��!

�N+1�n#
(22)
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gives the expected quality of a substitute intermediate on which a researcher will build his

innovation. It can be veri�ed that � (0) =  and � (!) is always strictly less than 1= (1 + �)

(since the summation starts from n = 1). This implies that a su¢ cient condition for research

directed at substitute not to be pro�table is

�� � (1 + �) (r + �) : (23)

This establishes (proof in the text):

Proposition 2 Suppose that (23) holds. Then all research being directed at the active varieties

(!� = 0) and all intermediates having a gap of N steps between active and substitute varieties

(��N = 1) is the unique stationary equilibrium.

3.4 Discussion of Modeling Assumptions

The framework in this section is designed as a �minimalist� dynamic model for the analysis

of diversity of research. It clari�es the key modeling issues and attempts to communicate the

main ideas of this paper in a transparent manner� while at the same time also providing a

simple framework for the modeling of endogenously evolving technology gaps between active and

substitute varieties. The Appendix presents a more standard model of endogenous technological

change, which leads to results similar to those presented in this and the next sections. A natural

question is whether an even simpler model could have been used to highlight the key economic

mechanisms. I now brie�y argue why this is not possible. In particular, there are �ve features

of the model that are important either for the results or for simplifying the exposition: (1) the

quality ladder structure; (2) a continuum of intermediates; (3) continuous time; (4) the feature

that research cannot be directed to speci�c individual intermediates; (5) the characterization of

the distribution of quality gaps between active and substitute varieties. I now explain why each

of these is either necessary or greatly simpli�es the analysis.

First, the quality ladder structure, for example, as in Aghion and Howitt (1992) or Grossman

and Helpman (1991), is necessary for the results. This will become particularly clear in the

next section, but the main idea can be discussed now. With the quality ladder structure, an

innovation for the far future is not attractive because before the time to employ the innovation

comes, another researcher is likely to have leapfrogged the product in question. In contrast, with

a structure that incorporates horizontal innovations as in Romer (1990), following the invention

of a new product (or machine), there are no further innovations replacing this product. This

removes the externality that is central to the discussion here� the externality created on future

versions of the same product or intermediate.
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Second, the presence of a continuum of intermediates simpli�es the analysis greatly by re-

moving aggregate risk. Without this feature aggregate output would jump whenever there is

an innovation or the active variety disappears. While in this case one could characterize the

expected value of output, working with a continuum of intermediates simpli�es the analysis both

algebraically and conceptually.

Third, continuous time also simpli�es the algebra. In particular, in discrete time, the rele-

vant quantities become somewhat more involved because of the following two features: (a) the

probability of success for an individual scientist depends on whether another scientist has been

successful; in continuous time, the probability of two such events (success by this scientist and

another) happening simultaneously vanishes, simplifying the expressions for expected returns

from research; (b) the expression for the growth rate is also similarly simpli�ed and takes the

form given in (12), clearly highlighting the trade-o¤ between research on active and substitute

varieties.

Fourth, research is assumed to be directed to either active or substitute varieties, but not to

speci�c intermediates. This is because, with the current formulation, pro�ts are proportional to

quality q and all researchers would prefer to direct their research to the variety with the highest

q. The general model presented in the Appendix allows for a research technology that uses the

�nal good (rather than the labor of scientists) and makes the cost of research proportional to

the quality of the intermediate. With this formulation, the results do not depend on whether

research can be directed to speci�c intermediates.

Finally, the most substantive aspect of the model is the characterization of the distribution

of quality gaps between active and substitute varieties. While this introduces some amount of

complication, it is necessary since the cost of lack of diversity is a large gap between the active

and substitute varieties, which thus needs to be determined endogenously in equilibrium. An

important modeling contribution of this paper is to provide a tractable framework for an explicit

characterization of the distribution of these gaps.

Several other features of the model are also adopted to simplify the exposition and will be

relaxed in the Appendix. In particular, in the Appendix, I present an endogenous technological

change model based on a quality ladder speci�cation. The model in the Appendix does not

assume linear preferences and perfect substitutions among di¤erent intermediates. In addition,

the feature that innovations receive their full marginal contribution aggregate output when used

in production is replaced with an explicit derivation of the pro�ts of monopolistically competitive

�rms after they innovate. Finally, as also pointed out in the previous paragraph, this extended

model further allows innovations to be directed not just to the active or the substitute varieties,

but also to speci�c intermediates.
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4 Optimal Technological Progress

In this section, I establish that when � is su¢ ciently large, the equilibrium is ine¢ cient and the

growth rate is ine¢ ciently low. I then provide the economic intuition for this result.

4.1 Suboptimality of Equilibrium Technological Progress

Since all agents maximize the net present discounted value of output and are risk neutral (and

idiosyncratic risks can be diversi�ed), a natural measure of the optimality of the allocation of

resources in this equilibrium is the expected value of output. Let us focus on this measure. First

note that if � = 0, we can ignore research on substitute varieties and the equilibrium allocation

trivially coincides with the only feasible allocation. Thus the interesting case is when � > 0.

Suppose that a planner determines the allocation of scientists between research on the active

and the substitute varieties. Consider the simple scenario where a fraction ! of the scientists

are allocated to undertake research on substitute varieties.

The main result of this section is the following proposition.

Proposition 3 Suppose that � > ��, where

�� � �

�
: (24)

Then the stationary equilibrium in Proposition 1 is suboptimal. In particular, starting with ! = 0

a small increase in ! raises long-run output growth.

This proposition states that when potential switches from active to substitute technologies

are su¢ ciently frequent, then some amount of �diversity in research,�that is, research directed

at both the active and the substitute varieties, is necessary to maximize steady-state equilib-

rium growth. Before presenting the proof of this proposition, note that it refers to �long-run�

growth because it compares the stationary equilibrium growth rates to growth in an alternative

stationary allocation. The Appendix provides a comparison of the net present discounted value

of output taking into account the adjustment dynamics. It shows that the same conclusion as

in Proposition 3 holds provided that � > ��� > ��.16 The analysis in the Appendix gives the

value of ��� as

��� � r + �

�
: (25)

As expected, when r ! 0, ��� ! ��, since without discounting, the objectives of maximizing

the long-run growth rate and the net present discounted value of output coincide.

16 It is also clear that � > �� is possible while g� = �� � � (1� ) > 0. For example, � = 4=3, � = 1, � = 1:1,
 = 1=4 and � = 4 imply that � > �� = 1, while g� = 0:1, so that positive growth in the economy does not imply
optimality.
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To prove Proposition 3, let us �rst compute the relative quality gap between active and

substitute varieties in a stationary allocation where a fraction ! of scientists are directing their

research to substitute varieties. Let us again use Q to denote the average quality of active

varieties (as de�ned in (3)) and let the average quality of the substitute varieties be �Q. Then

in a stationary distribution given by h��0 (!) ; ��1 (!) ; :::; ��N (!)i, this gap parameter � as a
function of ! can be written as

� (!) =

NX
n=0

(1 + �)�n ��n (!)

=

PN
n=0 (1 + �)

�n
�
�!
1�!

�N�n
PN
n=0

�
�!
1�!

�N�n : (26)

The �rst line of this expression de�nes � (!) as the average relative quality of substitute va-

rieties (relative to the active varieties), simply using the fact that this is given by a weighted

average of the relative qualities of the substitute varieties of intermediates where substitutes have

n = 0; 1; :::; N step gaps and the weights are given by the stationary distribution fractions of

intermediates with n = 0; 1; :::; N gaps (��0 (!) ; �
�
1 (!) ; :::; �

�
N (!)). The second line substitutes

for ��n (!) from (17).

It can be veri�ed that lim!!0 � (!) =  � (1 + �)�N , consistent with the derivations in the
previous section. Moreover, it can also be veri�ed that � (!) is continuously di¤erentiable for

all ! 2 [0; 1), and straightforward di¤erentiation gives its derivative as

�0 (!) =

�
1

1�!

�2
�
PN�1
n=1 (N � n) (1 + �)�n

�
�!
1�!

�N�n�1
PN
n=0

�
�!
1�!

�N�n

�

�
1

1�!

�2
�

�PN
n=1 (1 + �)

�n
�
�!
1�!

�N�n�PN�1
n=1 (N � n)

�
�!
1�!

�N�n�1
�PN

n=0

�
�!
1�!

�N�n�2 :

And thus

�0 (0) = �� (1 + �)�N > 0:

With an identical argument to that in the previous section, the long-run (stationary alloca-

tion) growth rate of the economy is

g (!) = �� (1� !)� � (1� � (!)) ;

with the only di¤erence from (12) being that the �rst term is multiplied by (1� !), re�ecting
the fact that not all scientists are working on active varieties, and the relative gap between active
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and substitute varieties is now � (!) rather than . Therefore,

g0 (0) = ��� + ��0 (0)

= ��� (1 + �)�N � ��:

The result that whenever

� > �� � � (1 + �)N

�
� �

�
;

equilibrium growth is too slow then follows immediately and establishes Proposition 3.

The Appendix shows that a similar result applies when we look at the adjustment of the

distribution of gaps between active and substitute varieties following an increase in ! starting

from ! = 0.

4.2 Why Is the Equilibrium Suboptimal?

The externality that is not internalized in the equilibrium is the following: when a researcher

undertakes an innovation either for an active or a substitute variety, it not only increases current

output but also contributes to future output growth because it ensures that future innovations

for this product will start from a higher base� each innovation increases existing quality by

a proportional amount. However, the researcher does not capture these gains after its patent

expires due to exogenous or endogenous technological change. This implies that every inno-

vation creates positive externalities on all future innovators of the same (variety of the same)

intermediate. When � = 0, this externality does not a¤ect the allocation of resources, since

there is no choice concerning the direction of technological change and each scientist is already

fully utilizing all of his capacity. However, when there is a choice between active and substitute

varieties, this externality a¤ects the relative private gains. In particular, the externality has a

disproportionate e¤ect on research directed at substitute varieties because this type of research

is socially bene�cial not for the immediate gains it generates but because it increases the quality

of the substitute variety and creates a better platform for yet further innovation after the active

variety disappears. Consequently, incentives to undertake research on such varieties are too low

and there is not enough �diversity�in research.

This discussion also clari�es that the suboptimality identi�ed here is a consequence of the

patent system assumed in the analysis. This patent system is a stylized representation of the

system of intellectual property rights used in most advanced economies, where a new product

(process or technology) does not need to pay royalties to the previous innovations, provided

that it improves existing technological know-how beyond a minimal required inventive step (or

it improves over technologies that are more than 20 years old and are thus no longer patented).17

17See, for example, Scotchmer (2005).
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Although, in practice, some innovations will need to make payments to previous patent holders,

this does not change the thrust of the argument in this paper; patent duration is capped at 20

years, and it is straightforward to extend the qualitative results presented here to a model with

such limited patent payments.

In the context of the simple economy here, there exists an alternative patent system that

can internalize the knowledge externalities and would prevent the ine¢ ciency identi�ed here.

However, as discussed in the Introduction, this alternative patent system is both di¤erent from

actual patent systems and is di¢ cult to implement. Let us �rst discuss what this alternative

patent system would have to look like. Since the externality is on future innovators, the patent

system would have to involve a payment (e.g., royalty) from all future innovators in a particular

line to the current innovator. For example, all innovations in laser technology or solid-state

physics in the 20th century would have to pay royalties to Heisenberg, Einstein or Bohr. In

practice, patent systems do not have this feature and once a new product or procedure is

deemed to pass the originality (required step) requirement, it does not have to pay royalties to

the innovators of the previous leading-edge technology, let alone to all innovations that invented

the technologies that preceded the previous one.

5 Diversity and Technological Progress

In this section, I discuss how the diversity in the preferences, competences or beliefs of scientists

a¤ects equilibrium growth. I start with a simple variation on the model presented so far where

scientists have a comparative advantage for active or substitute research. I then discuss another

variation with heterogeneous beliefs.

5.1 Comparative Advantage

Suppose that each scientist has access to the same technology for innovating on active varieties

(�ow rate �), but in addition, if scientist i undertakes research on substitute varieties, then the

�ow rate at which he will succeed is given by "i�, where "i has a distribution across scientists

given by G (").18 The variable "i captures researcher diversity� the diversity in the abilities,

interests or beliefs of scientists concerning which research lines are likely to be successful in the

future. Let us refer to "i as the �type�of the scientist. The model studied so far is a special

case where G (") has all of its mass at " = �. To ensure compatibility with the analysis in the

previous section, let us assume that Z 1

0
"dG (") = �:

18 In other words, instead of a uniform innovation rate of �� for substitute varieties as in the previous two
sections, now researcher i has innovation rate of "i� if he directs his research to substitute varieties.
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Let us denote the support of G as
�
� � �0; � + �

�
(with �0, � > 0). We can think of G (") as

�highly�concentrated around � if �0 and � are small. Let us de�ne the notion of greater diversity

(of scientists or researchers) as a mean-preserving spread of G involving an increase in �0 and �.

Again consider a candidate equilibrium where all scientists direct their research towards

active varieties. With an identical argument to that in Section 3, the value of undertaking

research on active varieties for any scientist is given by (7) (since all scientists have the same

productivity in research on active varieties). Similarly, the analysis leading up to (11) implies

that the value of undertaking research towards substitute varieties for a researcher of type "i is

RS (Q j "i) =
�"i

r + �+ �
RA (Q) :

If G is highly concentrated around �, then research directed at substitute varieties will be

unpro�table for all types. In particular, if

� � �� � r + �+ �

�
� �; (27)

then the allocation in which no scientist undertakes research directed towards substitute varieties

is once again a stationary equilibrium.

Next, consider an increase in diversity, corresponding to a mean-preserving spread of G (in

particular, an increase in �). For a su¢ ciently large change in G of this form, it will become

pro�table for some of the researchers with high "�s to start directing their research towards

substitute varieties. When this happens, the form of the equilibrium resembles that discussed

in subsection 3.3. In particular, there will clearly exist a threshold level �" such that scientists

with type greater than �" will undertake research on substitute varieties, and thus the fraction

of researchers working on active varieties will be G (�"). The values of undertaking research

towards substitute and active varieties in this case follow from the analysis in subsection 3.3. In

particular, the value of undertaking research towards active varieties, when average quality of

such varieties is Q, becomes

RA (Q j �") = �
�Q

r + �+ �G (�")
: (28)

The value of research directed towards substitute varieties is characterized as in subsection 3.3.

In particular, let us de�ne the equivalent of � (!) in (22) as

�� (�") �
NX
n=1

�R1
�" "dG (")

G (�")

�N�n0@ NX
j=0

�R1
�" "dG (")

G (�")

�N�j1A�1 (1 + �)�n � (29)

"
1�

�
�G (�")

r + �+ �G (�") + �
R1
�" "dG (")

�N+1�n#
;

which takes into account that the probability of innovation in active and substitute varieties is no

longer �(1�!) and ��!, but � (1�G (�")) and �
R1
�" "dG ("). This function is also subscripted by
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� to emphasize its dependence on the distribution function G, particularly on its upper support,

�+ �. Then, the value of undertaking research towards substitute varieties for a scientist of type

"i (when the average quality of active varieties is Q) is

RS (Q j "i;�") = �"i
�

r + �+ �
R1
�" "dG (")

�� (�")R
A (Q j �") : (30)

The equilibrium value of the threshold �" is then given by the solution to

RS (Q j "i = �";�") = RA (Q j �") ;

or by �" such that

��"
�

r + �+ �
R1
�" "dG (")

�� (�") = 1:

In general, such �" may not be unique. Nevertheless, it is clear that if � is greater than ��,

there does not exist a stationary equilibrium with no research directed at substitute varieties.

Moreover, if � increases just above ��, by the fact that � (�") is continuous and �� (�") =  for

� � ��, the implications of this change will be identical to those of a small increase in ! starting

from ! = 0 in the baseline model. This argument thus establishes the following proposition

(proof in the text).

Proposition 4 In the above environment, consider a distribution of researcher diversity G0

such that � � �� (as given by (27)). Then all research being directed at active varieties is a

stationary equilibrium. Now consider a shift to G1 with support
�
� � �01; � + �1

�
, where �1 > ��.

This will increase the diversity of research in equilibrium and also raise the equilibrium growth

rate provided that �1 is su¢ ciently close to �
�.

Proposition 4 shows that diversity of researchers will tend to increase the extent of diversity

in research� that is, with more heterogeneous competences of researchers, equilibria will involve

greater research e¤ort being directed towards substitute varieties. Since the equilibrium of the

baseline model studied in the previous two sections may have too much conformity and too little

diversity, diversity from researchers may improve the rate of growth and technological progress

in the economy. The proposition requires that �1 is close to �
� for the equilibrium growth rate

to increase. This is natural, since an extreme mean-preserving spread can induce (close to) half

of all scientists to direct their research to substitute varieties, which will not necessarily increase

growth.

5.2 Di¤erences in Beliefs

A related but di¤erent interpretation of the analysis of the previous subsection and of Proposition

4 is also useful. Suppose that there is no di¤erence in the abilities of the researchers and they
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all have a �ow rate �� of undertaking successful innovations when their research is directed

at substitute varieties. Instead, scientists have either di¤erent beliefs about the likelihood of

switches between active and substitute varieties or obtain additional di¤erential utility from

undertaking research directed at targets di¤erent from the majority of other researchers. Suppose

that " again has a distribution given by G, with the same de�nition of �0 and �, and let us also

adopt the same de�nition of �greater diversity�.

With this interpretation, the equations need to change a little, since a high " researcher

working on innovations in substitute varieties is not more productive. It is straightforward to

repeat the same steps as above and conclude that as long as (27) holds, there will be no research

directed at substitute varieties. However, when this condition does not hold, the equilibrium

will take a slightly di¤erent form. In particular, (28) remains unchanged and gives the expected

return to research directed at active varieties. Expected return to research on substitute varieties

is, instead, given by

RS (Q j "i;�") = ��"i
�

r + �+ �� (1�G (�"))�̂� (�")R
A (Q j �") ;

with

�̂� (�") �
NX
n=1

�
� (1�G (�"))

G (�")

�N�n0@ NX
j=0

�
� (1�G (�"))

G (�")

�N�j1A�1 (1 + �)�n �
"
1�

�
�G (�")

r + �+ �G (�") + �� (1�G (�"))

�N+1�n#
:

An increase in diversity again as similar e¤ects. However, this slightly di¤erent interpretation

also highlights an important point: the decisions of certain scientists to direct their research to

substitute varieties may be �non-pro�t maximizing�. This has two implications. First, it may be

precisely the non-pro�t objectives of scientists that sometimes restore the diversity in research

that may be socially bene�cial and useful for more rapid technological progress. Second, with

this interpretation, if researchers were employed in pro�t-maximizing organizations, there would

be a con�ict between the objectives of organizations (which would be to induce researchers to

direct their e¤orts towards active varieties) and the wishes of the researchers themselves, and it

would be the latter that is more useful for the society. This may then generate a justi�cation for

creating non-pro�t research centers (such as universities or independent research labs), where

the diversity of researchers, rather than pro�t incentives, can guide the direction of their research

e¤ort.
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6 Concluding Remarks

This paper has presented a tractable dynamic framework for the analysis of the diversity of

research. Using this framework, it is shown that equilibrium technological progress may feature

too little diversity. In particular, it may fail to invest in �alternative�technologies, even if it is

known that these technologies will become used at some point in the future. The economic intu-

ition leading to this result is simple: innovations are made for current gain� the future bene�ts

from these innovations are not fully internalized. This externality discourages research towards

technologies that will bear fruit in the future because, in these research lines, current innova-

tions are likely to be followed by further innovations before these technologies can be pro�tably

marketed. A social planner wishing to maximize output (the net present discounted value of

output or alternatively discounted utility) would choose a more diverse research portfolio and

would induce a higher growth rate than the equilibrium allocation. I also showed how diversity

of researchers� in particular, the presence of researchers with di¤erent interests, competences

or ideas� can induce a more diverse research portfolio and thus increase economic growth.

The broader message is that the research process may, under certain circumstances, generate

too much conformity and too little diversity� with all or the majority of scientists working to

develop the same research lines. The model here emphasized one mechanism for such conformity:

the greater pro�tability of developing currently-marketed products relative to technologies for

the future. Other mechanisms may be equally important in practice. For example, learning from

the success of others might create �herding,�making the majority of the researchers follow early

successes in a particular �eld. Or certain types of research may create greater externalities and

more limited private returns, so that research becomes concentrated in �low-externality��elds.

Depending on the exact mechanism leading to such lack of diversity in research, di¤erent types

of policy and market remedies may be required.19 If the problem is one of lack of diversity,

greater diversity of preferences, beliefs or competencies of researchers is likely to be socially

useful. As discussed in the previous section, this might also suggest a justi�cation for university-

like organizations that provide non-monetary rewards and encourage non-pro�t-seeking research

behavior among scientists. More detailed theoretical and empirical investigations of whether and

why there may be too much conformity or too little diversity in research and how the society

might respond to this challenge are interesting areas for further study.

19And of course, if we consider a rich array of mechanisms, it is also possible that there might be too much
diversity, for example because diversity in research has greater private value than social value. This highlights
that ultimately the theoretical framework used for evaluating the private and social values of diversity needs to
be empirically tested and validated.
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Appendix

Characterization of Optimal Policy

I now provide a characterization of the optimal policy, which involves comparing the entire path

of output rather than the more straightforward comparisons of long-run growth rates reported

in the text. With an argument identical to that in the text, the growth rate of average quality

of output at any t (even when we are not in a stationary allocation) is

g (t) = �� (1� ! (t))� � (1� � (t)) ; (31)

where

� (t) =
NX
n=0

(1 + �)�n �n (t) ; (32)

and �n (t) denotes the fraction of intermediates at time t with a gap of n steps between active and

substitute varieties. This is similar to (26) and on the right-hand side we have the fractions of

intermediates with di¤erent gaps (which are not necessarily the stationary equilibrium fractions).

Correspondingly, with a slight abuse of notation, I use � (t) rather than � (!).

These fractions will evolve as a function of the time path of research devoted to substitute

varieties, [! (t)]1t=0. In particular, with a reasoning identical to that leading to (13), the law of

motion of these fractions is given by

_�n (t) = ��! (t)�n+1 (t) + � (1� ! (t))�n�1 (t)� (��! (t) + � (1� ! (t)))�n (t)

for n = 1; :::; N � 1, and in addition,

_�N (t) = � (1� ! (t))�N�1 (t)� ��! (t)�N (t)

and

_�0 (t) = ��! (t)�1 (t)� � (1� ! (t))�0 (t) :

However, as noted in the text, one of these di¤erential equations for � is redundant, and in

addition we have that
NX
n=0

�n (t) = 1:

In what follows, it is most convenient to drop the di¤erential equation for �N�1 (t) and also

write

�N�1 (t) = 1�
N�2X
n=0

�n (t)� �N (t) : (33)

Then, the di¤erential equations that will form the constraints on the optimal control problem

can be written as

_�n (t) = ��! (t)�n+1 (t) + � (1� ! (t))�n�1 (t)� (��! (t) + � (1� ! (t)))�n (t) (34)
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for n = 1; :::; N � 3,

_�N�2 (t) = ��! (t)

 
1�

N�2X
n=0

�n (t)� �N (t)
!
+� (1� ! (t))�N�3 (t)�(��! (t) + � (1� ! (t)))�N�2 (t) ;

(35)

_�N (t) = � (1� ! (t))
 
1�

N�2X
n=0

�n (t)� �N (t)
!
� ��! (t)�N (t) ; (36)

and

_�0 (t) = ��! (t)�1 (t)� � (1� ! (t))�0 (t) : (37)

Let us use boldface letters to denote sequences, i.e., ! � [! (t)]1t=0. Therefore, the net present
discounted value of output, taking into account adjustment dynamics, is given by

W (!) =

Z 1

t=0
exp (�rt)Q (t) dt:

The optimal policy will involve choosing ! to maximize W subject to

_Q (t) = g (t)Q (t) ; (38)

with g (t) given by (31), and also subject to (33), (34)-(37) and (38). Without loss of any

generality, let us normalize Q (0) = 1.

Given these di¤erential equations, the optimal policy is determined as a solution to an

optimal control problem with current value Hamiltonian, with appropriately de�ned costate

variables and Lagrange multipliers. In particular, let the multipliers on (33) be � (t), (34)-37)

'n (t) for n = 0; 1; :::; N , and on (38) � (t). Then

H (!;Q;�;';�;�) = exp (�rt)Q (t) +

+� (t) g (t)Q (t)

+'0 [��! (t)�1 (t)� � (1� ! (t))�0 (t)]

+

N�3X
n=1

'n (t)
�
��! (t)�n+1 (t) + � (1� ! (t))�n�1 (t)� (��! (t) + � (1� ! (t)))�n (t)

�
+'N�2[��! (t) (1�

N�2X
n=0

�n (t)� �N (t))

+ � (1� ! (t))�N�3 (t)� (��! (t) + � (1� ! (t)))�N�2 (t))];

+'N (t) [� (1� ! (t)) (1�
N�2X
n=0

�n (t)� �N (t))� ��! (t)�N (t)]

+� (t) [
N�2X
n=0

�n (t) + �N (t)� 1]:
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Substituting from (32) and (33) into (31), we have

g (t) = �� (1� ! (t))

��
"
1�

N�2X
n=0

(1 + �)�n �n (t)� (1 + �)�(N�1)
 
1�

N�2X
n=0

�n (t)� �N (t)
!
� (1 + �)�N �N (t)

#
= �� (1� ! (t))� �

�
1� (1 + �)�(N�1)

�
+

N�2X
n=0

�
(1 + �)�n � (1 + �)�(N�1)

�
�n (t)� �� (1 + �)�N �N (t) :

Let us now write the necessary conditions for a continuous solution to this optimal control

problem. We use �N�1 (t) = 1�
PN�2
n=0 �n (t)� �N (t) to simplify expressions.

For ! (t), we have

� ��� (t)Q (t)

+ '0 (t) [���1 (t) + ��0 (t)]

+

N�1X
n=1

'n (t)
�
��
�
�n+1 (t)� �n (t)

�
+ �

�
�n (t)� �n�1 (t)

��
(39)

� 'N (t)
�
���N (t) + ��N�1 (t)

�
� 0;

where this condition is written as an inequality to allow for the solution to be at ! (t) = 0 (and

incorporating the fact that ! (t) will always be less than 1).

For Q (t), we have

� _� (t) = exp (�rt) + � (t) g (t) ; (40)

For �0 (t), we have

� _'0 (t) = �� (t)
h
1� (1 + �)�(N�1)

i
�'0 (t) � (1� ! (t)) + '1 (t) ��! (t) (41)

�'N�2 (t) ��! (t)� 'N (t) � (1� ! (t)) + � (t) :

For �n (t) (n = 1; :::N � 2), we have

� _'n (t) = �� (t)
�
(1 + �)�n � (1 + �)�(N�1)

�
�'n (t) [��! (t) + � (1� ! (t))] (42)

+'n+1 (t) � (1� ! (t)) + 'n�1 (t) ��! (t)

�'N�2 (t) ��! (t)� 'N (t) � (1� ! (t)) + � (t) :
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For �N (t), we have

� _'N (t) = ��� (t)� (1 + �)�N

�'N�2 (t) ��! (t) (43)

+'N (t) [� (1� ! (t))� ��! (t)] + � (t) :

In addition, we have a set of transversality conditions corresponding to each of the state variables.

Now suppose that we start at t = 0 with �n (0) = 0 for all n = 0; 1; :::; N � 1, and thus
naturally, �N (0) = 1. We will now characterize the conditions under which ! (t) = 0 for all t is

not optimal. Suppose, to obtain a contradiction, that starting from such an allocation ! (t) = 0

for all t is optimal. Let us also de�ne (as in the text)

g� � �� � � (1� ) .

Since �n (0) = 0 for all n = 0; 1; :::; N � 1, (33) is slack, thus � (t) = 0. Moreover, since

�n (t) = 0 for all t and n = 0; 1; :::; N � 2, we can ignore the evolution of 'n (t) (for n =

0; 1; :::; N �2). Thus we can simply focus on the evolution of the two costate variables, � (t) and
'N (t). Since ! (t) = 0 for all t and �n (t) = 0 for all t and n = 0; 1; :::; N � 2, their evolution is
given by the following two di¤erential equations:

� _� (t) = exp (�rt) + g�� (t) ; (44)

and (using also the fact that  � (1 + �)�N )

_'N (t) = ��� (t) + �'N (t) : (45)

Since (44) only depends on � (t), it has a unique solution of the form

� (t) = cK exp (�g�t) +
exp (�rt)
r � g� ;

where cK is a constant of integration. The transversality condition corresponding to Q (t)

requires that r > g� (which we assume) and that cK = 0, thus

� (t) =
exp (�rt)
r � g� : (46)

Now using (46), the second di¤erential equation (45) also has a unique solution

'N (t) = cN exp (�t)� r��
exp (�rt)

(r � g�) (r + �) ;

where cN is a constant of integration, again set equal to 0 by the transversality condition.

Therefore,

'N (t) = ���
exp (�rt)

(r � g�) (r + �) : (47)
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Combining (46) and (47) with (39) and recalling the normalization that Q (0) = 1, we have

that a necessary condition for ! (t) = 0 for all t to be an optimal solution is

��� exp (�rt)
r � g� exp (g�t) + ����

exp (�rt)
(r � g�) (r + �) � 0

for all t. Now let us look at this condition when t = 0, which is equivalent to

�� � (r + �) :

Therefore, if

� > ��� � r + �

�
;

the candidate solution is not optimal and we conclude that the policy that maximizes the

discounted value of income (or utility) will involve directing some research towards substitute

varieties, proving the claim in the text.

General Model

I now present a more general environment building on Aghion and Howitt (1992), Grossman

and Helpman (1991), and the textbook endogenous technological change model presented in

Acemoglu (2009). This model generalizes the baseline environment presented in the text and

shows that several assumptions used in the text are unnecessary for the results. The environment

is again in continuous time and aggregate output is produced by combining a continuum of

intermediates. As in the text, each intermediate � comes in a countably in�nite number of

varieties, denoted by j1 (�), j2 (�),...., again one of those being active at any point in time. Let

us focus on the active variety j (�), and the next-in-line (substitute) variety j0 (�). Qualities

are again denoted by qj (�; t) > 0 and qj0 (�; t) > 0, and evolve endogenously. The production

function for aggregate output at time t is

Y (t) =
1

1� �

�Z 1

0
qj(�; t)xj(�; tjq)1��d�

�
L�;

where xj(�; tjq) is the quantity of the active variety of intermediate � (of quality qj (�; t), so
that xj(�; tjq) is short for xj(�; tjqj (�; t))) purchased at time t and L is total labor, supplied
inelastically. This production function exhibits constant returns to scale to intermediates and

labor. As in the main text, there is a quality ladder for each intermediate (of active and

substitute varieties), equi-distant rungs. Thus each innovation takes the machine quality up by

one rung on this ladder, so that following each improvement quality increases by a proportional

amount 1 + � > 1. Also as in the main text, we have that if qj0 (�; t) = qj (�; t) and qj (�; t)

increases to qj (�; t+) = (1 + �) qj (�; t), then the quality of the substitute variety also increases
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to qj0 (�; t+) =  (1 + �) qj (�; t). Similarly, we also continue to assume that the quality of the

next-in-line substitute variety can be no less than qj (�; t).

New machine vintages are again invented by R&D. R&D e¤ort can be directed to any of the

di¤erent intermediates and to active or substitute varieties. Here, let us suppose that R&D uses

the �nal good as input (rather than scientists). In particular, if Z (�; t) units of the �nal good

are spent for research to create an intermediate of quality q (�; t), then it generates a �ow rate

�Z (�; t)

q (�; t)

of innovation. This speci�cation implies that one unit of R&D spending is proportionately less

e¤ective when applied to a more advanced intermediate, which ensures that research will be

directed to lower quality as well as higher quality intermediates.

Suppose also that there is free entry into research, thus any �rm or individual can undertake

research on any of the varieties of any of the intermediates.

Once a particular machine of quality q (�; t) has been invented, any quantity of this machine

can be produced at marginal cost  q (�; t). The assumption that the marginal cost is propor-

tional to the quality of the machine is natural, because producing higher-quality machines should

be more expensive. I normalize  � 1� � without any loss of generality.
Let us also suppose that the consumer side of this economy admits a representative household

with the standard CRRA preferences, in particular, at time t = 0 maximizingZ 1

0
exp (�rt) C (t)

1�� � 1
1� � dt:

Finally, the resource constraint of the economy is

X (t) + Z (t) + C (t) � Y (t) ;

where X (t) �
R 1
0 xj (�; tjq) d� is the total amount of the �nal good spent on the production

of the intermediate. Thus, this constraint requires that the amounts devoted to intermediate

production, R&D and consumption should not exceed total output.

Household maximization implies the familiar Euler equation,

_C (t)

C (t)
=
1

�
(r (t)� �): (48)

A �rm that has access to the highest quality active variety of intermediate will be the

monopoly supplier of intermediate and will make pro�ts, denoted by � (�; tjq) for intermediate
� 2 [0; 1] of quality q. The value of this �rm is given by a Hamilton-Jacobi-Bellman equation

similar to (5), in particular, taking into account possible changes in the value functions over

time and denoting the endogenously-determined interest rate at time t by r (t), this is

r (t)Vj (�; tjq)� _Vj (�; tjq) = � (�; tjq)� (�+ z (�; tjq))Vj (�; tjq) ;
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which again takes into account the destruction of this value due to both further innovations (at

the �ow rate z (�; tjq)) and switches away from the active variety (at the �ow rate �).

Factor markets are assumed to be competitive.

Let us start with the aggregate production function for the �nal good producers. Straight-

forward maximization gives the demand for each intermediate as follows:

x(�; tjq) =
�

q (�; t)

px (�; tjq)

�1=�
L for all � 2 [0; 1] and t;

where px (�; tjq) refers to the price of machine of variety � of quality q at time t. This is an
iso-elastic demand curve and the monopoly producers of the highest quality intermediate (of the

active variety) will wish to set monopoly price that is a constant markup over marginal cost.

However, we also need to ensure that this monopoly price is not so high as to make the next

best vintage pro�table. The following assumption is enough to ensure this:

� �
�

1

1� �

� 1��
�

� 1: (49)

This then guarantees that the pro�t-maximizing price is

px (�; tjq) = q (�; t) ; (50)

and thus the equilibrium involves

x (�; tjq) = L: (51)

Consequently, the �ow pro�ts of the �rm selling intermediate of quality q(�; t) is

� (�; tjq) = �q (�; t)L: (52)

Using this expression, total output in the economy is

Y (t) =
1

1� �Q (t)L; (53)

where, with the same convention that j refers to the active variety,

Q (t) �
Z 1

0
qj(�; t)d� (54)

is the average total quality of machines. This analysis thus shows that the relevant expressions

here, in particular, the form of the derived production function, (53), and the returns from

having access to the highest quality, (54), are very similar to those in the text, but are derived

from the aggregation of pro�t-maximizing micro behavior. It is also important that, as in the

text, the q (�; t)�s are stochastic, but their average Q (t) is deterministic with a law of large
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numbers type of reasoning (since the realizations of the quality of di¤erent machine lines are

independent). Total spending on intermediates can also be computed as

X (t) = (1� �)Q (t)L: (55)

Finally, the equilibrium wage rate, given by the marginal product of labor, is

w (t) =
�

1� �Q (t) : (56)

The free-entry condition for active varieties, written in complementary slackness form, is

�Vj(�; tjq) � q and �Vj(�; tjq) = q if Z (�; t) > 0: (57)

Next, we can also write the value function for substitute varieties. To do this, let us again

focus on equilibrium in which there is zero R&D toward substitute varieties. In that case, with

the reasoning similar to that in the main text, we have that the value of a substitute variety of

quality q0 is given by

r (t)Vj0
�
�; tjq0

�
� _Vj0

�
�; tjq0

�
= �

�
Vj
�
�; tjq0

�
� Vj0

�
�; tjq0

��
� z�Vj0

�
�; tjq0

�
;

where z� is the equilibrium rate of innovation in active varieties. The relevant free entry condition

in this case can then be written as

�Vj0(�; tjq0) � q0:

First, note that in the candidate equilibrium, both the value functions of active and substitute

varieties will be independent of time and also of �, and can be written as V (q) and ~V (q0). Then,

an identical analysis to that in the text implies that for all � > 0, the free entry condition for

the substitute varieties of all intermediates will be slack. In this case, we have,

V (q) =
��q

r + �+ z
:

Free entry into research for active varieties requires

�V (q) � q;

or
��

r + �+ z
� 1:

Free entry into research for non-leading vintage can be expressed as

~V (q) � �q

�

r + �+ z
V (q) � �q;

34



which will always be satis�ed as strict inequality whenever the free entry condition for active

varieties is satis�ed.

With an argument similar to that in the text, the growth rate of average quality of technology

is
_Q (t)

Q (t)
= �z� + � ( � 1) :

Moreover, in this allocation, the consumer Euler equation implies

r = �+ �g;

where g is the growth rate of output and consumption.

The free entry condition then can be written as

��

�+ � (�� 1) z + �� ( � 1) + z + � = 1:

Thus:

z� =
��� �� �� ( � 1)� �

1 + � (�� 1) :

g� =
��� �� �� ( � 1)� �

� + ��1
� � (1� ) :

Then, the growth rate of output will be positive, i.e., g� > 0, if

��� �+ �� (1� )� � > �� (1� ) + ��1� (1� ) :

The rest of the analysis can be carried out in a manner similar to that in the text.
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